Syllabus Third Semester Courses in MSc Biotechnology (2024-2025) #### Contents: - Syllabus for Elective Courses: - PSBTY6501EL1 Clinical Drug Development - PSBTY6502EL1 Applications of Informatics in Biotechnology - Evaluation and Assessment guidelines PRINCIPAL ST. XAVIER'S COLLEGE AUTONOMOUS MUMBAI - 400 001. # APPROVED SYLLABUS | MSc | II Biotechnology | | | | | |--|--|---------------------------------------|--|--|--| | Cou | rse Title: CLINICAL DRUG DEVELOPMENT Cour | rse Code: PSBTY6501EL1 | | | | | COL | lits 4: (Theory and Practical) 60 hr. LABORATOR: Tata Consultancy Services- under the ramme (under MOU) | TCS-driven Academic Interface | | | | | No. | Course Objectives The industry oriented and curated course aims to provide the learners with the following | | | | | | Gain a deep understanding of the domains in drug development process, from early-stage clinical research to Clinical data management. Gain insights into the process of drug safety surveillance and its documentation process. Regulatory Proficiency by attaining knowledge about regulatory affairs and in navigating the complex regulatory landscape governing pharmaceuticals and biotechnology. Learn the importance of ethical considerations, and data integrity in clinical research. Acquire practical skills and knowledge directly applicable to careers in pharmac companies, clinical research organizations (CROs) and regulatory bodies | | | | | | | со | Course Outcomes On completing the course, the learner will be able to | Bloom's Taxonomy Level
(BT level) | | | | | 1 | Comprehend about the domains involved in Clinical Research. Understand and demonstrate proficiency in the fundamental principles and techniques of clinical data management. | Remembering,
Understanding | | | | | 2 | Comprehend important aspects of pharmacovigilance, and
gain a deep understanding of the regulatory framework
governing pharmaceuticals and healthcare products | Understanding Applying,
Evaluating | | | | | 3 | Implement data collection tools and ensure data accuracy and integrity throughout the trial | Applying, Analyzing, Evaluating | | | | | 4 | Implement the technical writing skills in creating compliant
documents for diverse scientific needs in the pharmaceutical | Applying, Analyzing, Creating | | | | © St. Xavier's College (Empowered Autonomous Institute), Mumbai, INDIA industry. #### SXCM/Syllabus/Biotechnology/NEP/2024-25 | UNIT I | | Introduction to Clinical Drug Development | (15) | |----------|----|---|------| | | 1. | Overview of Drug Discovery & Development , Overview of Clinical
Research . | | | | 2. | Overview of Clinical Trial Process | | | | 3. | Overview of GxP guidelines; Overview of Ethical considerations and ICH GCP Guidelines . | | | UNIT II | | Clinical Data Management | (15) | | | 1. | Overview of Clinical Data Management | | | | 2. | Clinical Database programming and Management Plan | | | | 3. | Medical Coding Dictionaries and other tools for CDM | | | UNIT III | | Pharmacovigilance and Regulatory Affairs | (18) | | | 1. | Overview to Pharmacovigilance | | | | 2. | Overview to Regulatory Authorities and Regulations | | | | 3. | Adverse events and reporting methods. | | | | 4. | ICH guidelines | | | | 5. | Global Regulatory requirements | | | UNIT IV | | Communication Formats | (12) | | | 1. | Essentials in communication of complex data | | | | 2. | Scientific Communication formats | | | | 3. | Formats of Clinical trial documents | | | | 4. | Ethical practices in medical writing | 1 | #### List of Recommended resources: - Centre, U. M. (n.d.). WHODrug global. Uppsala Monitoring Centre | UMC. https://who-umc.org/whodrug/whodrug-global/ - ClinicalTrials gov, (n.d.). ClinicalTrials.gov. https://clinicaltrials.gov/study-basics/glossary - Comisión federal para la Protección contra Riesgos Sanitarios | Gobierno | gob.mx. (n.d.). El portal único del gobierno. | gob.mx. https://www.gob.mx/cofepris/en #### SXCM/Syllabus/Biotechnology /NEP/2024-25 - Data management in clinical research: An overview. (2012, March). PubMed Central (PMC). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3326906/ - GCDMP©. (n.d.). Society for Clinical Data Management (SCDM). https://scdm.org/gcdmp/ - Good-pharmacovigilance-practices-module-v-risk-management-systems-rev-2_en.pdf. (n.d.). In https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-good-pharmacovigilance-practices-module-v-risk-management-systems-rev-2_en.pdf. - Health Canada. (2022, May 2). Pharmaceutical drugs directorate. Canada.ca. https://www.canada.ca/en/health-canada/corporate/about-health-canada/branches-agencies/health-products-food-branch/therapeutic-products-directorate.html - Home. (n.d.). CDSCO. https://cdsco.gov.in/openems/openems/en/Home/ - Homepage. (n.d.). European Medicines Agency. https://www.ema.europa.eu/en/homepage - ICH official web site: ICH. (n.d.). ICH Official web site: ICH. https://www.ich.org/page/efficacy-guidelines - (n.d.), MedDRA, https://www.meddra.org/ - (2023, September 26). U.S. Food and Drug Administration. https://www.fda.gov/ #### Evaluation (PSBTY6501EL1): Total marks per course - 100. - Formative Assessment 'for' Learning. ClA- 40 marks (Project assignment) - Summative Assessment 'of' Learning End Semester Examination 60 marks. One question from each unit for 15 marks, with internal choice. Total marks per question with choice -20 to 22. ### Distribution of Bloom's Taxonomy levels for the course assessment | Learning
Levels | Remembering | Understanding | Analyzing and
Application | Evaluation
And creation | | |--------------------|-------------|---------------|------------------------------|----------------------------|--| | *Percentage | NA | 30-35% | 40-45% | 20-30% | | | | | | | | | | - | rse Code: PSBTY6501EL1 | | |------|--|--------------------------------------| | Cred | its 4: Theory 30 hrs and Practical 30 hrs | | | No. | Course Objectives | | | 1. | The course aims to familiarize learners with the applications of information Biotechnology. | es in various domains of | | co | Course Outcomes On completing the course, the learner will be able to | Bloom's Taxonomy
Level (BT level) | | 1 | Gain proficiency in using informatics tools and software applications relevant to immunological research | Understanding,
Applying | | 2 | Apply the principles of vaccine design and be able to apply informatics approaches to identify potential vaccine candidates, predict antigenic epitopes, and assess vaccine efficacy. | Understanding,
Applying | | 3 | Develop proficiency in using bioinformatics tools and software applications relevant to plant biology research | Applying | | 4 | Gain a thorough understanding of the principles and concepts of nutrigenomies, including the interaction between nutrients and genes, and the impact of individual genetic variations on nutrient metabolism, absorption, and utilization. | Analyzing | | 5 | Proficient in applications of AI and ML in healthcare settings, including disease diagnosis, medical imaging analysis, drug discovery, personalized treatment planning, predictive analytics, and health monitoring. | Analyzing
Evaluating, Creating | | MSc | II BIOTECHNOLOGY | IOI OCV | | | | | |-------|---|--------------------------------------|--|--|--|--| | | se Title: APPLICATIONS OF INFORMATICS IN BIOTECHN se Code: PSBTY6501EL1 | OLOGY | | | | | | Credi | ts 4: Theory 30 hrs and Practical 30 hrs | | | | | | | No. | Course Objectives | | | | | | | 1. | The course aims to familiarize learners with the applications of informatics in various domains Biotechnology. | | | | | | | co | Course Outcomes On completing the course, the learner will be able to | Bloom's Taxonomy
Level (BT level) | | | | | | 1 | Gain proficiency in using informatics tools and software applications relevant to immunological research | Understanding,
Applying | | | | | | 2 | Apply the principles of vaccine design and be able to apply informatics approaches to identify potential vaccine candidates, predict antigenic epitopes, and assess vaccine efficacy. | Understanding,
Applying | | | | | | 3 | Develop proficiency in using bioinformatics tools and software applications relevant to plant biology research | Applying | | | | | | 4 | Gain a thorough understanding of the principles and concepts of
nutrigenomics, including the interaction between nutrients and
genes, and the impact of individual genetic variations on nutrient
metabolism, absorption, and utilization. | Analyzing | | | | | | 5 | Proficient in applications of AI and ML in healthcare settings, including disease diagnosis, medical imaging analysis, drug discovery, personalized treatment planning, predictive analytics, and health monitoring. | Analyzing
Evaluating, Creating | | | | | # SXCM/Syllabus/Biotechnology /NEP/2024-25 | UNIT I | | Data Resources for Immunoinformatics | | |--------|-------------------|--|-------------| | | 1. | Basic concept of immunology - Types of immunity, cells of immune system, epitope, paratope, Antigenicity, allergenicity | | | + | 2. | Concept of Immunoinformatics, current trends in Immunoinformatics | | | | 3. | Immunological databases - Antibody databases, Allergenic Databases, Pathogen antibody databases, Monoclonal antibody databases, organism / pathogen specific immunology databases, Epitope databases, IMGT, IEDB, Databases related to molecule evolution of immune gene and proteins and other related resources. | 16(T+P | | | 4. | Computational tools in Immunoinformatics - Online tools for analysis of gene, and proteome data related to immune system. | | | | 5. | Immunomics - concept and applications | | | UNIT | Vaccine Designing | | | | П | 1. | Epitope prediction - T and B cell | | | | 2. | Epitope analysis | | | | 3. | Allergenicity prediction | ., | | | 4. | Computational vaccine designing - Epitope prediction, docking, population coverage studies, Mapping of Vaccine Construct, Codon optimization and In Silico Cloning, Immune simulation, MD simulation. | 16
(T+P) | | | 5. | modelling, and interaction studies | | | | 6. | Practical case studies on vaccine designing. | | | UNIT | | Plant Bioinformatics | | | Ш | 11. | Bioinformatics for plant breeding - examples - Rice, Maize. Bioinformatics for studying stress resistance in plants, Bioinformatics approaches to study resistance to plant pathogen (Case studies) | 14
(T+P) | | | 2. | Network pharmacology and applications - Network Biology to
Network Pharmacology, Network Ethnopharmacology, Network
pharmacology common databases network construction, case studies
and applications. | | # SXCM/Syllabus/Biotechnology /NEP/2024-25 | | 3. | Nutrigenetics and Nutrigenomics: Concept of nutrigenetics,
Nutrient- gene interactions, Nutrigenomics, Nutraceuticals, Natural
bioactive compounds | | |------|----|---|-------------| | | 4. | Biodiversity informatics: Biodiversity informatics: Concepts, practices, and challenges, Indian Biodiversity Information System (IBIS), Global Biodiversity Information Facility, Biodiversity Information Management, India Biodiversity Portal | | | UNIT | | ML and AI in Biotechnology | | | IV | 1. | Al and ML concepts and models | | | | 2. | Overview of applications in biological sciences and biotechnology | | | | 3. | AI in Agricultural Biotechnology - AI-based algorithms in the agricultural sector | | | | 4. | Health Informatics Al in medical Biotechnology - Al in disease detection, Framework for Al in disease detection modelling, medical imaging for diseases diagnosis Al in disease monitoring Al and ML in Drug discovery - ML and Al in drug discovery, Role of ML in Predicting Drug Efficacy and Toxicity, Case Studies of Successful Al-Aided Drug Discovery, Challenges and Limitations | 14
(T+P) | #### Reference Books: - Edwards, D. (Ed.). (2008). Plant bioinformatics: methods and protocols (Vol. 406). Springer Science & Business Media. - Flower, D. R. (Ed.). (2008). Immunoinformatics: Predicting immunogenicity in silico (Vol. 409). Springer Science & Business Media. - 3. Krane, D. E. (2002). Fundamental concepts of bioinformatics. Pearson Education India. - 4. Pevsner, J. (2015). Bioinformatics and functional genomics. John Wiley & Sons. - 5. Tomar, N. (Ed.). (2020). Immunoinformatics. Humana Press. - Yang, Z. R. (2010). Machine learning approaches to bioinformatics (Vol. 4). World scientific. #### Research Articles: - Bhardwaj, A., Kishore, S., & Pandey, D. K. (2022). Artificial intelligence in biological sciences. Life, 12(9), 1430. - Blanco-Gonzalez, A., Cabezon, A., Seco-Gonzalez, A., Conde-Torres, D., Antelo-Riveiro, P., Pineiro, A., & Garcia-Fandino, R. (2023). The role of ai in drug discovery: challenges, opportunities, and strategies. Pharmaceuticals, 16(6), 891. - Chandran, U., Mehendale, N., Patil, S., Chaguturu, R., & Patwardhan, B. (2017). Network pharmacology. Innovative approaches in drug discovery, 127. - Hopkins, A. L. (2008). Network pharmacology: the next paradigm in drug discovery. Nature chemical biology, 4(11), 682-690. - Johnson N. F. (2007). Biodiversity informatics. Annual review of entomology, 52, 421–438. https://doi.org/10.1146/annurev.ento.52.110405.091259 - Noor, F., Tahir ul Qamar, M., Ashfaq, U. A., Albutti, A., Alwashmi, A. S., & Aljasir, M. A. (2022). Network pharmacology approach for medicinal plants: review and assessment. Pharmaceuticals, 15(5), 572. - Oli, A. N., Obialor, W. O., Ifeanyichukwu, M. O., Odimegwu, D. C., Okoyeh, J. N., Emechebe, G. O., & Ibeanu, G. C. (2020). Immunoinformatics and vaccine development: an overview. ImmunoTargets and therapy, 13-30. - Thomas, S., Abraham, A., Baldwin, J., Piplani, S., & Petrovsky, N. (2022). Artificial intelligence in vaccine and drug design. Vaccine Design: Methods and Protocols, Volume 1, Vaccines for Human Diseases, 131-146. ## Evaluation (PSBTY6502EL1): Total marks per course - 100. - Formative Assessment 'for' Learning (continuous internal assessment CIA to improve learning). - CIA- 40 marks (Mini Project/ Assignment) - Summative Assessment 'of' Learning (focus on outcomes, quantitative data for outcomes of instruction). - End Semester Examination 60 marks. - One question from each unit for 15 marks, with internal choice. Total marks per question with choice -20 to 22. ## Distribution of Bloom's Taxonomy levels for the course assessment | Learning
Levels | Remembering | Understanding | Analyzing
and
Application | Evaluation | Creation | |--------------------|-------------|---------------|---------------------------------|------------|----------| | *Percentage | 10% | 25-35% | 20-25% | 15-20% | 10-15% |