St. Xavier's College (Autonomous),

Mumbai

Syllabus of the courses offered by the

Post Graduate Department of Biotechnology

(2017 onwards)

Contents

Syllabus for the following courses:

Theory Courses	
MS.BTS.7.01	Biomolecules
MS.BTS.7.02	Immunology
MS.BTS.7.03	Molecular Biology
MS.BTS.7.04	Membrane Studies & Cell cycle regulation
Practical Courses	
MS.BTS.7.01PR	Basic Laboratory Skills
MS.BTS.7.02PR	Microbiological & mo. Bio techniques
MS.BTS.7.03PR	Biochemistry
MS.BTS.7.04PR	Computational tools in Biology

SUBJECT (THEORY): BIOTECHNOLOGYCLASS: MSC- SEMESTER ICOURSE CODE: MS.BTS.7.01TITLE: BIOMOLECULES

Overall learning objectives:

60 Lectures

- To understand the structure ,function and purification of proteins
- To understand the topology of DNA
- To understand the basic concepts in neurobiology

UNIT 1:	Protein structure and	purification	15 lectures
	I I otom bu actui e ana	puincunon	ie ieeeui es

Learning objectives:

- To understand the architecture of proteins
- To know the techniques of separation and purification of proteins and understand the underlying principles.

Topics:

- 1.1 Primary structure of proteins and their determination end group analysis; cleavage of disulphide bond; separation, characterization of polypeptide chain; specific peptide cleavage reactions
- 1.1 Secondary structure Ramachandran plot, helical structure, beta structure
- 1.2 Tertiary structure- fibrous (Collagen) and globular (Myoglobin) structure, Protein stability, protein denaturation
- 1.3 Quaternary structure (Haemoglobin) subunit interaction, symmetry, subunit composition determination
- 1.4 Protein purification: Principles and methods

UNIT 2 :	Protein folding	15
lectures.		

Learning Objective:

- To understand the protein folding mechanism
- To study the molecules assisting protein folding

Topics:

2.1 Protein folding

- 2.2 The different pathways of protein folding and its co-relationship with protein stability.
- 2.3 Molecular chaperons
- 2.4 Effects of misfolding protein on human diseases; unfolded protein response

UNIT 3 :	DNA Topology	15 lectures

Learning objectives:

• To understand the higher order structure of DNA and super-coiling parameters with enzymatic manipulation

Topics:

- 3.1 Different forms of DNA, A/B/C/Z and RL form of double helical DNA, Triple Helix,
- 3.2 Nucleic acid binding protein Leucine Zipper, Zinc fingers
- 3.3 OB fold, Beta Barrel, Helix-turn-helix, Helix-loop-helix
- 3.4 Linking number, Supercoiling, Topoisomerases

UNIT 4:

Neurochemistry

15 lectures

Learning objective:

- To understand the basic organisation and functional aspects of neurons
- To understand the molecules involved in neurotransmission.
- To gain an understanding of the effects of neurotoxins in functioning of the nervous system

Topics:

- 1. Organization of brain
- 2. Anatomy and functions of neuron
- 3. Ion conducting channels.
- 4. Neuronal pathways and Propagation of nerve impulse
- 5. Synapses and gap junction, synaptic transmission
- 6. Neurotoxins
- 7. Neurotransmitters
- 8. Neuromuscular junction: Physiologic anatomy, molecular biology of acetylcholine formation and release, Drugs enhancing and blocking the transmission at NMJ, Myasthenia Gravis

References:

- 1. J. Berg,J. Tymoczko & L. Stryer, Biochemistry, 5th edition, W. H. Freeman & Company publisher, 2002
- 2. G. Zubay, Biochemistry, 4th Edition, Wm .C. Brown Publishers, 1999
- 3. David E. Metzler, Biochemistry, The chemical reactions of living cells, Volume I and II., Elsevier, 2003
- 4. Nelson and Cox, Lehninger's Principles of Biochemistry, fourth edition, Macmilan Worth Publisher, 2004
- 5. Donald Voet and Judith Voet. Biochemistry third edition, John Wiley and sons, Inc publisher, 2004
- 6. Thomas Devlin, Textbook of Biochemistry with clinical correlations, Fifth Edition, John Wiley and sons, Inc publisher, 2002
- 7. Campbell and Farrell, Biochemistry, fourth and fifth ed, Thomson Brooks/Cole, 2005
- 8. R Murray, D Granner, P Mayes, Harpers Illustrated biochemistry, 26th Edition, McGraw Hills
- 9. William Nyhan, Nadia A Sakati, Diagnostic Recognition of Genetic Disease, Library of Congress cataloguing in publication data.
- 10. Arthur M Lesk , Introduction to Protein science Architecture, Function and Genomics , 1998 Oxford publishers
- 11. Additional ref

SUBJECT (THEORY): BIOTECHNOLOGY

CLASS: MSC- SEMESTER I TITLE: IMMUNOLOGY

Overall learning objectives:

To understand the structure and function of molecules involved in innate and adaptive immunity.

UNIT 1

Immunoglobulins

COURSE CODE: MS.BTS.7.02

15 lectures

60 Lectures

Learning objectives:

- To understand the source and production of blood cells involved in immunity.
- To understand the structure, diversity, synthesis, and secretion of Immunoglobulins

Topics:

- 1.1 Haematopoiesis
- 1.2 Immunoglobulin fine structure
- 1.3 Immunoglobulin super family
- 1.4 Multigene organization of Ig gene
- 1.5 Variable region gene rearrangement
- 1.6 Generation of antibody diversity
- 1.7 Class switching among constant regions.
- 1.8 Synthesis, assembly, and secretion of Immunoglobulins

UNIT 2: MHC and Regulation of immune response 15 lectures

Learning objective

• To understand the mechanism of antigen processing and presentation.

- To understand the mechanism of B cell and T cell activation and the signalling pathways involved therein.
- To understand the importance of T cell regulation

Topics:

- 2.1 Cellular distribution of MHC molecule
- 2.2 Antigen processing and presentation
- 2.3 Exogenous and endogenous antigen processing
- 2.4 Self MHC restriction of T cells
- 2.5 Presentation of non-peptide antigens
- 2.6 Activation of B lymphocytes
- 2.7 Activation of T lymphocytes
- 2.8 T-cell regulation

UNIT 3: Effector molecules in Immune Response 15 lectures

Learning objective

- To understand the complement system as the major effector of humoral immune response
- To understand cytokine as the signalling molecule of the immune system, its regulation and effect on the outcome of diseases.

Topics:

- 3.1 Complement system: Functions of Complement, Components, Activation and Regulation.
- 3.2 Cytokines: Properties, Receptors, Antagonists, Diseases, Therapeutic use of cytokines

Unit 4	Immune Effector Mechanisms	15 Lectures
--------	----------------------------	-------------

Learning objective:

• To understand immune effector mechanisms in inflammation and infections

Topics:

- 4.1 Phagocytosis
- 4.2 The inflammatory process
- 4.2.1 Role of neutrophils and other mediators in inflammation
- 4.2.2 Role of NF-kb and STATs in inflammation
- 4.2.3 Localised, systemic, and chronic inflammation and role of anti-inflammatory agents
- 4.3 Pattern recognition receptors: TLRs, NLRs, microbicidal peptides
- 4.4 Autophagy
- 4.5 Immune response to bacterial and viral infections

References:

- 1. Goldsby, T J. Kindt, Osborne, Janis Kuby, Immunology, 5th Ed, Freeman, and company, 2003
- 2. Roitt, Brostoff, Male, Immunology, sixth Ed, Mosby, An imprint of Elsevier science Ltd, 2006
- 3. Abbas, Abul K & Lichtman, Cellular and molecular immunology. Fourth edition, W B Saunders company, 2000
- 4. Elgert, K. D. *Immunology: Understanding the immune system*. New York: Wiley-Liss. (1996).
- 5. Ian R Tizard, Immunology, An introduction, fourth edition. Thomson Publisher , 1994
- Kenneth Murphy; Paul Travers; Mark Walport, Janeway's Immunobiology, 7th Edition, Garland Publishers, 2007

Syllabus for Core Courses in M. Sc Biotechnology. St. Xavier's College –Autonomous, Mumbai.

SUBJECT (THEORY): BIOTECHNOLOGYCLASS: MSC- SEMESTER ICOURSE CODE: MS.BTS.7.03TITLE: MOLECULAR BIOLOGY

Overall learning objectives:

- To understand the content, constitution, and assembly of genomes in the eukaryotic system
- To elucidate the transfer of information from genes to RNA in detail

UNIT 1	Genomes: Anatomy
	Ochomes, Amatomy

Learning objective:

• To understand the anatomy of eukaryotic genome and its significance

Topics:

- 1.1 Human nuclear genome
- 1.1.1 Genetic features of nuclear genome
- 1.1.2 Noncoding DNA
- 1.2 Human mitochondrial genome
- 1.3 Chloroplast Genome
- 1.4 Genomes of model organisms-
- 1.4.1 Saccharomyces cerevisiae
- 1.4.2 Caenorhabditis elegans,
- 1.4.3 Arabidopsis thaliana
- 1.4.4 Drosophila melanogaster
- 1.5 Human Genome Project: strategies and outcome
 - Assembly of a contiguous DNA sequence using shotgun method, clone contig method and whole genome shotgun sequence method.

60 Lectures

15 Lectures

Syllabus for Core Courses in M. Sc Biotechnology. St. Xavier's College –Autonomous, Mumbai.

UNIT 2 Mapping of Genomes

15 Lectures

Learning objective:

• To understand the methodology of genome sequencing.

Topics:

- 2.1 Genetic Mapping: DNA markers for genetic mapping
- 2.2 Physical Mapping: Restriction Mapping, Fluorescent in situ hybridization (FISH), Sequence tagged site (STS) mapping.

UNIT 3 Transcription in prokaryotes and eukaryotes 15 Lectures

Learning objective:

- To understand the interaction of proteins with DNA in the assembly of transcription machinery and its execution
- To understand the elongation, termination, and post transcriptional modification of the primary transcript

Topics:

- 3.1 DNA-Protein interactions during Transcription Initiation
- 3.2 Regulation of Transcription initiation
- 3.3 Synthesis of eukaryotic mRNAs by RNA polymerase II
- 3.4 Intron splicing
- 3.5 Synthesis and processing of Non-coding RNAs: Transcript elongation and termination by RNA polymerases I and III
- 3.6 Introns in eukaryotic pre-rRNA and pre-tRNA
- 3.7 Processing of Pre-RNA, Degradation of mRNAs

UNIT 4: Translation and Post translational modifications 15 Lectures

Learning objective:

• To study the mechanism of translation and post translational modifications

Topics:

- 4.1 Basic mechanisms of RNA to Protein conversion
- 4.2 Post-translational Processing
- 4.3 Processing by proteolytic cleavage
- 4.4 Processing by chemical modification
- 4.5 Protein Degradation

References:

- 1. Benjamin Lewin, Gene VII, 2000, Oxford University Press Publishers
- 2. T A Brown, Genomes 3, third edition, 2007, Garland Science Publishing.
- Simmons, Gardner , Principles of genetics ,8th ed, John Wiley and sons, Inc publishers, 2006
- 4. Donald Voet and Judith Voet. Biochemistry third edition, 2004, John Wiley and sons, Inc
- 5. T D. Watson and others, Molecular biology of the gene, 6th edition, 2004, Pearson education ltd.
- 6. G M Cooper, The Cell, a molecular approach, Library of Congress cataloguing in publication data.
- 7. Griffiths, A. and Miller J , An introduction to genetic analysis , 2000, W.H. Freeman ,
- 8. Lodish. H, Berk, A Molecular cell biology, 4th Ed, John, , 2000, Wiley and sons, Inc

SUBJECT (THEORY): BIOTECHNOLOGYCLASS: MSC- SEMESTER ICOURSE CODE: MS.BTS.7.04TITLE: MEMBRANE STUDIES AND CELL CYCLE REGULATION

Overall learning objectives:

• To understand the architecture and function of membranes with aspects of cellular signalling

Membrane Architecture

• To understand cell cycle and cell death process.

Learning objective:

UNIT 1

- To understand the structure and assembly of membranes.
- To understand the types of lipoproteins

Topics:

- 1.1 Membrane Structure and dynamics
- 1.1.1 Composition and Architecture of membrane: lipids and proteins (integral and peripheral), Hydropathy index
- 1.1.2 Dynamics- lipid movements, flippase, FRAP, Lipid raft, Membrane fusion.
- 1.2 Solubilisation of the membrane by using different detergents.
- 1.3 Lipoproteins structure, association with proteins and function
- 1.3.1 Types of Lipoproteins

Lectures
I

Learning Objectives:

• To study the membrane functions and their utility in pharmaceutics **Topics:**

60 Lectures

15 Lectures

2.1 Membrane functions

- 2.1.1 Membrane transport: facilitated diffusion (Glut 1) and Primary and Secondary active transport (P, F, ABC, symporter, and antiporter)
- 2.1.2 Intracellular membrane transport: Transport of molecules between nucleus and cytosol, Endoplasmic reticulum
- 2.2 Liposome structure and their uses in drug targeting

UNIT 3:	Biosignaling	15 Lectures

Learning objective

• To elucidate the cellular signalling in control of gene activity and sensory pathways

Topics:

- 3.1 Cell signalling pathways that control gene activity-
- 3.1.1 TGF-Beta and activation of Smads
- 3.1.2 Regulation of TGF-Beta by negative feedback loops.
- 3.1.3 Cancer and loss of TGF-Beta signalling
- 3.2 Activation of gene transcription by seven-spanning cell surface receptors: Wnt and Hedgehog
- 3.3 Sensory transduction in vision, olfaction, and gustation

UNIT 4: Cell cycle and its regulation 15 Lectures

Learning objective:

- To understand eukaryotic cell cycle and its regulation
- To understand cell death and its regulation

Topics:

- 4.1 Cell cycle phases, Control of mitosis by cyclins, MPF activity and cyclin dependant kinases
- 4.2 Checkpoints in cell cycle regulation
- 4.3 Apoptosis pathways and its regulation
- 4.4 *In Vitro* systems to study cell death.

References:

- 1. Mathews, Van Holde, Biochemistry, second ed., The Benjamin/ Cummins publishing Company
- 2. Donald Voet and Judith Voet. Biochemistry third edition, 2004, John Wiley and sons, Inc.
- 3. T D. Watson and others, Molecular biology of the gene, 6th edition, 2004, Pearson education Ltd.
- 4. Benjamin Lewin, Gene VII, 2000, Oxford University Press Publishers
- 5. Karl Branden and John Tooze , introduction to Protein structure , 2nd ed, garland publishers, 1999.
- 6. Lodish. H, Berk, A Molecular cell biology , 4th John, 2000 Wiley and sons, Inc

SUBJECT (PRACTICALS): BIOTECHNOLOGY

CLASS: MSC- SEMESTER I COURSE CODE: MS.BTS.7.01PR

TITLE: BASIC LABORATORY AND SCIENTIFIC COMMUNICATION SKILLS

Learning Objectives:

- 1. To learn basic laboratory skills and good laboratory practices
- 2. To learn how to plan and execute experiments and analyse the data obtained.

Topics:

- 1. Introduction to good laboratory practices
- 2. Preparation of solutions and buffers
- 3. Calibration of instruments: pH meter, analytical balance, UV-spectrophotometer, colorimeter
- 4. Calibration of apparatus used for measuring: glass pipettes, auto pipettes and measuring cylinders.
- 5. Validation: Autoclave, Laminar air flow
- 6. Introduction to principles of Quality assurance and Quality control
- 7. Scientific communication:
- 8. Gathering scientific data from various sources.
 - a. Written communication : Guide to clear writing , forms, and styles of writing.
 - b. Oral communication variants
 - c. Concept of Plagiarism

Recommended Books:

- 1. Biochemical calculations (2nd Ed, 2004) Irwin H Segel, Wiley Publications
- Principles and techniques of Biochemistry and molecular biology (7th Ed, 2010) Keith Wilson and John Walker, Cambridge university Press

Syllabus for Core Courses in M. Sc Biotechnology. St. Xavier's College –Autonomous, Mumbai.

- 3. Anthony Wilson , Handbook of Science Communication, IOP publishing Ltd. CRC press (1999)
- 4. Relevant SOPs from USP and IP

CLASS: MSC- SEMESTER I COURSE CODE: MS.BTS.7.02PR

TITLE: MICROBIOLOGY AND MOLECULAR BIOLOGY TECHNIQUES

Learning Objectives:

- 1. To learn the basic microbiology techniques and good microbiology laboratory practices.
- 2. To learn the basic techniques of extraction and quantification of genetic material from organisms and biological fluids
- 3. To learn how to plan and execute experiments and analyse the data obtained.

Topics:

- 1. Introduction to basic microbial techniques
 - a. Identification of micro-organisms
 - b. Sterility testing
- 2. Extraction of Genomic DNA Extraction from Bacteria
- 3. Extraction of Genomic DNA Extraction from Human samples
 - a. Cheek cells
 - b. Blood
- 4. Quantification of Biomolecules using UV (nucleic acids and proteins)

References:

- Principles and techniques of Biochemistry and molecular biology (7th Ed, 2010) Keith Wilson and John Walker, Cambridge university Press
- 2. Biochemistry Laboratory (2nd Ed, 2012) Rodney Boyer, Pearsons Publication
- 3. Biotechnology explorations (2000), Sheppler J and Cassin P, ASM Press

SUBJECT (PRACTICALS): BIOTECHNOLOGY

CLASS: MSC- SEMESTER I COURSE CODE: MS.BTS.7.03PR

TITLE: BIOCHEMISTRY

- 1. To learn the basic techniques of separation, quantification, purification, and characterisation of proteins.
- 2. To learn how to plan and execute experiments and analyse the data obtained.

Topics: Protein separation and quantification

- 1. Protein Estimation using the following methods:
 - a. Biuret assay
 - b. Bradford's assay
 - c. Folin-Lowry assay

- 2. Protein Separation by electrophoresis:
 - a. Polyacrylamide gel electrophoresis (native and SDS)
 - b. Horizontal gel electrophoresis (Slide and Slab)
- 3. Protein gel staining techniques:
 - a. Coomassie brilliant blue, silver staining, TCA and Ponceau staining
 - b. Activity staining : LDH
- 4. Protein Purification techniques:
 - a. Protein Precipitation
 - b. Ion exchange Chromatography
 - c. Gel filtration
 - d. Affinity Chromatography
 - e. Study of purified Immunoglobulins using SDS PAGE
- 5. Viscosity studies of proteins

References:

- Principles and techniques of Biochemistry and molecular biology (7th Ed, 2010) Keith Wilson and John Walker, Cambridge university Press
- 2. Biochemistry Laboratory (2nd Ed, 2012) Rodney Boyer, Pearsons Publication

Syllabus for Core Courses in M. Sc Biotechnology. St. Xavier's College –Autonomous, Mumbai.

SUBJECT (PRACTICALS): BIOTECHNOLOGY

CLASS: MSC- SEMESTER I COURSE CODE: MS.BTS.7.04PR

TITLE: COMPUTATIONAL TOOLS IN BIOLOGY

Topics:

- Introduction to computational tools in biology :
 - Retrieval of protein, nucleotide, and protein structural data for analysis
- Nucleotide sequence analysis
 - a. Study Human genome data
 - b. Human genome project and its implications
 - c. Exploration of human genome databases,
 - d. Mitochondrial databases and its importance
 - e. Study of organism specific databases : Eg: Saccharomyces , Caenorhabditis elegans , Arabidopsis and Drosophila
 - f. Study of nucleotide sequence : Intron- exon finding , ORF finding.
- Protein sequence analysis
 - a. Primary protein sequence analysis
 - b. Secondary sequence analysis
 - **c.** Tertiary structure analysis

References:

Syllabus for Core Courses in M. Sc Biotechnology. St. Xavier's College –Autonomous, Mumbai.

St. Xavier's College – Autonomous

Mumbai

Syllabus

For IInd Semester Courses in M. Sc in Biotechnology

(November 2017 onwards)

Contents

Syllabus for the following courses:

Theory Courses

- MS.BTS.8.01 Metabolism and PTC in metabolic engineering
- MS.BTS.8.02 Clinical Immunology
- MS.BTS.8.03 Molecular and Cellular Biotechnology
- MS.BTS.8.04 Advanced Analytical Techniques

Practical Courses

- MS.BTS.8.01PR Biochemical Techniques and Assays
- MS.BTS.8.02PR Molecular Biology
- MS.BTS.8.03PR Immunology and Animal cell culture
- MS.BTS.8.04PR Analytical Techniques Data Interpretation

SUBJECT (THEORY): BIOTECHNOLOGY **CLASS: MSC- SEMESTER II COURSE CODE: MS.BTS.8.01 TITLE: MS. BTS.2.01 METABOLISM AND PTC IN METABOLIC ENGINEERING**

Overall learning Objectives:

- To understand metabolic pathways and their interrelationships
- To study the nutritional diseases associated with abnormal metabolism.
- To study plant metabolism

Unit 1 **Carbohydrate and Lipid metabolism**

Learning objective

- To understand how energy is stored in carbohydrates and the diseases caused by excessive accumulation of glycogen.
- To study lipid metabolism and its clinical implications.

Topics:

- 1.1 Carbohydrate metabolism
- 1.2 HMP, Uronic acid pathway
- 1.3 Glycogenesis and Glycogenolysis
- 1.4 Glycogen storage diseases
- 1.5 Lipid metabolism: synthesis of essential fatty acids and its biological significance.
- 1.6 Lipoprotein Metabolism and role of Lipoproteins in diseases.

Unit 2 **Protein and Nucleic acid Metabolism**

Learning objectives:

• To study the metabolic pathways of amino acids and nucleic acids and associated disorders

Topics:

60 Lectures

15 Lectures

15 Lectures

- 2.1 Metabolism of amino acids
- 2.2 Biosynthesis of phenylalanine, tyrosine, threonine, and methionine
- 2.3 Metabolic breakdown of amino acids
- 2.4 Disorders of amino acid metabolism
- 2.5 Biosynthesis and degradation of purines and pyrimidines
- 2.6 Regulation of metabolism
- 2.7 Disorders of Nucleic acid metabolism

Unit 3 Plant metabolism

Learning objectives:

To study the fundamentals of carbohydrate and nitrogen metabolism in plants

Topics:

3.1 C-3 cycle and C-4 cycles

3.2 CAM, glyoxylate pathway

3.3 Photosynthetic formation of hydrogen

3.4 Nitrogen fixation and role of nitrogenise.

Unit 4 Applications of cell culture in metabolic engineering

15 Lectures

15 Lectures

Learning objective:

To understand the application of plant cell culture in secondary metabolite production

Topics:

- 3.1 Cell suspension cultures (batch and continuous) and immobilised cell culture systems,
- 3.2 Scale-up procedures in bioreactors, types of bioreactors for plant cell cultures.
- 3.3 Secondary metabolism and *in vitro* culture systems for secondary metabolites (including hairy root culture techniques)
- 3.4 Manipulation in production profile by biotic and abiotic elicitation; biotransformation
- 3.5 Cryopreservation and conservation of germplasm

References:

- 1. J. Berg, J. Tymoczko & L. Stryer, Biochemistry, 5th edition, W. H. Freeman & Company publisher, 2002
- 2. Nelson and Cox, Lehninger's Principles of Biochemistry, fourth edition, Macmilan Worth Publisher, 2004
- 3. Donald Voet and Judith Voet. Biochemistry third edition, John Wiley and sons, Inc publisher, 2004
- 4. Thomas Devlin, Textbook of Biochemistry with clinical correlations, Fifth Edition, John Wiley and sons, Inc publisher, 2002
- 5. R Murray, D Granner, P Mayes, Harpers Illustrated biochemistry, 26th Edition, McGraw Hills
- 6. Karl-Hermann Neumann, Ashwani Kumar, Jafargholi Imani, 2009, Plant Cell and Tissue Culture - A Tool in Biotechnology, Basics and Application, Springer-Verlag Berlin Heidelberg
- 7. M K Razdan, 2005, Introduction to Plant Tissue Culture
- 8. Cseke L.J., Kirakosyan A., Kaufman P.B., Warber S.L., Duke J.A. and Brielmann H.L. Natural Products from Plants, 2nd edition, Taylor & Francis group, 2006.

SUBJECT (THEORY): BIOTECHNOLOGY **CLASS: MSC- SEMESTER II** COURSE CODE: MS.BTS.8.02 **TITLE: CLINICAL IMMUNOLOGY**

Overall learning objectives:

- To understand the response of the human body towards allergens, grafts, tumors and infections.
- To understand the immune deficiencies and diseases

Unit 1 Hypersensitivity and Transplantation Immunology 15 Lectures

Learning objective:

- To study the classification and mechanism of hypersensitivity
- To understand the types of transplantation and immune response towards it •

Topics:

60 L

- 1.1 Hypersensitivity
- 1.1.1 Gel and Coomb's Classification
- 1.1.2 Type I, II, III, IV hypersensitivity
- 1.2 Transplantation immunology
- 1.2.1 Basis of Graft rejection,
- 1.2.2 Clinical manifestation of graft rejection
- 1.2.3 Immune tolerance
- 1.2.4 Immunosuppressive therapy
- 1.2.5 Clinical transplantation

Unit 2 Tumor immunology

15 Lectures

Learning objective:

• To understand the immune response involved in tumour progression and antibodybased therapeutics.

Topics:

- 2.1 Oncogenes and cancer induction
- 2.2 Tumors of immune system
- 2.3 Tumor antigens
- 2.4 Tumor evasion of immune system
- 2.5 Cancer immunotherapy

Unit 3 Immuno-deficiency and autoimmune diseases 15 lectures

Learning objective:

- To understand the mechanism of natural and pathogen induced immunodeficiency.
- To understand Autoimmunity.

Topics:

- 3.1 Primary immunodeficiency
- 3.2 Secondary immunodeficiency
- 3.3 Autoimmunity: Organ specific, systemic, mechanism, treatment

Unit 4 Experimental systems and advances in Immunology 15 Lectures

Learning objective:

• To study the various experimental systems and techniques involved in understanding Immune biology.

Topics:

- 4.1 Animal models: Inbred strains, Knock out/Knock in, transgenic models, models for immune diseases.
- 4.2 In vitro systems
- 4.3 Ag-Ab interaction assays for understanding immune biology, diagnostics, and therapeutics.
- 4.4 Flow cytometry
- 4.5 Antibody engineering (inclusive of hybridoma technology, display libraries and examples)

References:

- 1. Goldsby, T J. Kindt, Osborne, Janis Kuby, Immunology, fifth Ed, Freeman, and company.
- 2. Roitt, Brostoff, Male, Immunology, sixth Ed, Mosby, An imprint of Elsevier science Ltd
- 3. Abbas, Abul K & Lichtman, Cellular and molecular immunology. Fourth edition, W B Saunders company
- 4. Ian R Tizard, Immunology, An introduction, fourth edition. Thomson Publisher
- 5. Wener Luttmann, K Bratke, M. Kupper, D Myrtek, Immunology the experimental series publisher
- 6. Gordan Reeve and Ian Todd, Immunology, fourth edition. Blackwell Publishing House
- 7. Elgert, K. D. (1996). *Immunology: Understanding the immune system*. New York: Wiley-Liss.
- 8. Henry Y. Wang, Tadayuki Imanaka(1995. Antibody Expression and Engineering, Vol 604, American Chemical Society
- 9. William R. Strohl and Lila M. Strohl (2012). Therapeutic antibody engineering, Woodhead Publishing Limited.

SUBJECT (THEORY): BIOTECHNOLOGYCLASS: MSC- SEMESTER IICOURSE CODE: MS.BTS.8.03TITLE: MOLECULAR AND CELLULAR BIOTECHNOLOGY

Overall learning objectives:

- To understand the regulation of genome activity
- To study the basics of recombinant DNA technology
- To understand basic concepts and techniques in animal cell biotechnology

UNIT 1Regulation of Genome Activity15 Lectures

Learning objective:

• To study the regulation of gene activity using specific examples

Topics:

1.1 Genome rearrangements

1.2 Gene silencing by modification of histones and DNA

1.3 Regulation of Genome Activity during Development:

- 1.3.1 Vulva development in *Caenorhabditis elegans*
- 1.3.2 Development in Drosophila melanogaster
- 1.4 Genome editing techniques: RNAi, Nucleases (Zn finger nucleases, Transcription associated nucleases, CRISPR- Cas9)

UNIT 2: DNA VECTORS 15 Lectures

Learning objectives:

To understand the construction of specific vectors for protein studies and high-capacity genomic libraries

Topics:

60 L

2.1 Expression vectors

0 1 1	-			
211	For	max1m171ng	nrotein	synthesis
2.1.1	1 01	maximizing	protein	by menesis

- 2.1.2 To facilitate protein purification
- 2.1.3 To promote protein solubilisation
- 2.1.4 To promote protein export
- 2.1.5 Vectors for making RNA probes.
- 2.1.6 BACs and PACs
- 2.2 Cloning in Yeast-
 - 2.2.1 Plasmid vectors, expression of cloned genes, over expression of proteins
 - 2.2.2 Yeast two hybrid system

2.3 Vectors in Animal cells-plasmid vectors, selectable markers

2.3.1 Viral vectors-Adeno, retro, lenti virus

Unit 3 Application of rDNA technology

15 Lectures

Learning objectives:

To study the application of recombinant microbes and plants

Topics:

- 3.1 Plant engineering to overcome abiotic and biotic stress.
- 3.1.1 Insect Resistance
- 3.1.2 Virus Resistance
- 3.1.3 Herbicide Resistance
- 3.1.4 Salt and Drought Stress
- 3.2 Plant engineering for modification of nutrient content:
- 3.2.1 Amino Acids, Lipids, Vitamins, Iron
- 3.3 Synthesis of commercial products Restriction Endonucleases

UNIT 4 Animal Cell Culture

15 Lectures

Learning Objective:

- To understand the concepts and techniques involved in culturing animal cells *in vitro*.
- To understand the applications of *invitro* culturing of cells

Topics:

- 4.1 Biology of cultured cells
- 4.2 Primary Culture and development of cell lines normal and tumor
- 4.3 Maintenance of cells in culture: subculture, contamination, and cryopreservation
- 4.4 Characterisation of cells in culture
- 4.5 Transformation, immortalisation, and Differentiation
- 4.6 3-D culture: organ culture, histiotypic culture and organotypic culture

4.7 Cytotoxicity

References:

- 1. Benjamin Lewin, Gene VII, Oxford Publishers
- 2. T A Brown, Genome, Second edition, Bios Scientific publishers
- 3. Old and Primrose, Principles of Gene Manipulation. Blackwell Science publishers
- 4. Donald Voet and Judith Voet. Biochemistry third edition, 2004, John Wiley and sons, Inc
- 5. T D.Watson and others, Molecular biology of the gene , 6^{th} edition , 2004 , Pearson education ltd.
- 6. G M Cooper, The Cell, a molecular approach, Library of Congress cataloguing in publication data.
- 7. Griffiths, A. and Miller J , An introduction to genetic analysis , Freeman
- 8. Lodish, Berk, A Molecular cell biology, John Wiley and sons, Inc
- 9. Sambrook J, Russell., Molecular cloning, Vol I, II, III, CSHL Press
- 10. T A Brown, Gene cloning and DNA analysis, Bios Scientific publishers
- 11. Bernard Glick , Jack Pasternak and Cheryl Patten, Molecular Biotechnology- principles and applications of Recombinant DNA, 4th ed, ASM Press, 2010
- 12. Culture of Animal Cells, R Ian Freshney, Wiley Publications, 5^{th} / 6^{th} Ed
- 13. Animal Cell Culture: Essential Methods , John M Davis, John Wiley & Sons
- 14. Relevant current research articles.

COURSE: MS.BTS.8.04 ADVANCED ANALYTICAL TECHNIQUES

Page 26 of 54

Syllabus for Core Courses in M. Sc Biotechnology. St. Xavier's College –Autonomous, Mumbai.

Overall learning objectives:

• To understand the principles and applications of various analytical techniques used to study Biomolecules.

Topics:

Unit 1

Spectroscopy

15 Lectures

Learning Objectives:

• To understand the conformation and structural details of Biomolecules using spectroscopic techniques

Topics:

- 2.5 Basic principles, instrumentation, and applications of the following:
- 1.1 Fluorescence spectroscopy
- 1.2 ORD
- 1.3 CD spectroscopy
- 1.4 NMR
- 1.5 ESR

Unit 2Advances in Microscopy and X-Ray Crystallography15 Lectures

Learning objective:

- To study the current methods and applications of advanced biological imaging systems
- To gain knowledge of techniques used to obtain the structural insights of proteins.

Topics:

2.1 Advanced Microscopy

- 2.1.1 Different versions of advanced microscopy
- 2.1.2 Electron microscopy
- 2.1.3 Confocal Microscopy

2.2 X-Ray Crystallography

2.2.1 Principles, instrumentation, and application of X ray crystallography.

Unit 3	Gene amplification technique	15 lectures
Learni	ng Objectives:	
To und	erstand the principle and application of gene amplification	
Topics	:	
1.1 F	CR and its types	
1.1.1	Nested, ARMS, Inverse, SSCP	
1.1.2	Real Time	
1.1.3	Quantitative PCR	
1.1.4	Multiplex PCR	
1.2 N	Iolecular diagnostics	

- 1.2.1 Bacterial infections
- 1.2.2 Fungal infections
- 1.2.3 Viral infections
- 1.2.4 Parasitic infections

Advanced Analytical Techniques

15 lectures

Learning objectives:

• To understand the working mechanism and data analysis of high throughput techniques

Topics:

Unit 4

4.1 2-D PAGE

4.2 Advances in Chromatography

4.3 Mass spectrometry

4.4 MALDI-TOF-MS/MS

4.5 Biochips (DNA, Protein and Biosensors)

References:

- 1. Donald Voet and Judith Voet. Biochemistry third edition, 2004, John Wiley and sons
- 2. R Cotterill, Biophysics, An Introduction, John Wiley and sons, Inc
- 3. Skoog, Holler, Nieman., Principles of instrumental analysis, Thomson publishers
- 4. Daniel M, Basic Biophysics 2004, Student Edition
- 5. Bartlett & Stirling , PCR protocols, 2nd ed ., Humana publishers
- 6. David Spector and Robert Goldman, Basic methods in microscopy. Cold spring harbour laboratory press, 2006
- 7. Doughlas Chandler and Robert Robertson, Bioimaging current concepts in light and electron microscopy, Jones, and Bartlett publishers, 2009.

CLASS: MSC- SEMESTER II COURSE CODE: MS.BTS.8.01PR

TITLE: BIOCHEMICAL TECHNIQUES AND ASSAYS

Overall Learning Objectives:

- To learn the basic techniques for understanding metabolism
- To plan, execute experiments and analyse the data obtained.

Topics:

- 1. Determination of acid value of lipids
- 2. Determination of phosphorus from serum
- 3. Estimation of cholesterol from the serum sample
- 4. Estimation of Urea from serum or urine
- 5. Estimation of Creatinine from serum or urine
- 6. Isolation of chloroplast by sucrose gradient centrifugation
- 7. Measurement of chlorophyll content
- 8. Measurement of proton uptake by DCPIP
- 9. Separation of photosynthetic pigments by chromatography
- 10. Vitamin B12 bioassay
- 11. Enzymatic assay (Invertase)

References:

- 1. Principles and techniques of Biochemistry and molecular biology (7th Ed, 2010)Keith Wilson and John Walker, Cambridge university Press
- 2. Textbook of Medical Laboratory Technology (2nd Ed, 2006), Praful Godkar, Bhalani Publishing House.
- 3. Biochemistry Laboratory (2nd Ed, 2012) Rodney Boyer, Pearsons Publication

4.

CLASS: MSC- SEMESTER II COURSE CODE: MS.BTS.8.02PR

TITLE: MOLECULAR BIOLOGY

Learning Objectives:

- To learn the basic techniques in recombinant DNA technology
- To plan, execute experiments and analyse the data obtained.

Topics:

- 1. Isolation of DNA from yeast
- 2. Isolation of RNA from yeast/ E.coli
- 3. Creation of genomic library
 - i. Isolation of genomic DNA
 - ii. Isolation of Plasmid DNA
 - iii. Restriction Digestion
 - iv. Ligation
 - v. Transformation
- 4. Expression of recombinant proteins
- 5. PCR amplification of 16srRNA
- 6. RFLP analysis
- 7. Preparation of glycerol stocks

References:

1. Molecular Cloning : Laboratory Manual Vol I, 2001 , Joseph Sambrook, David William Russel, CHL Press

CLASS: MSC- SEMESTER II COURSE CODE: MS.BTS.8.03PR

TITLE: IMMUNOLOGY AND ANIMAL CELL CULTURE

Learning Objectives:

- To learn the basic tools used in Immunology.
- To learn the basic techniques in animal cell culture
- To plan, execute experiments and analyse the data obtained.

Topics:

- 1. Isoagglutination titre study
- 2. Single Radial Immunodiffusion
- 3. Dot-ELISA
- 4. Antibody/ antigen capture ELISA
- 5. Western Blot Technique
- 6. General aseptic techniques and preparation for ACC
- 7. Media preparation for ACC
- 8. Primary culture using chick embryo.
- 9. Subculture of cell lines
- 10. Karyotyping and G- Banding using human blood cells.

References:

- 1. Goldsby, T J. Kindt, Osborne, Janis Kuby, Immunology, fifth Ed, Freeman, and company, 2003
- 2. Culture of Animal Cells, R Ian Freshney, Wiley Publications, 5th / 6th Ed

SUBJECT (PRACTICALS): BIOTECHNOLOGY

CLASS: MSC- SEMESTER II COURSE CODE: MS.BTS.8.04PR

TITLE: ANALYTICAL TECHNIQUES DATA INTERPRETATION

Learning Objectives:

- To plan, execute experiments and analyse the data obtained.
- •

Topics:

1. Instrumentation and Data interpretation of the following techniques a. HPLC

- b. Gas chromatography
- c. 2D electrophoresis
- d. Mass spectrometry
- 2. Study of metabolic pathway databases eg: KEGG
- 3. Primer designing
- 4. Primer validation and study of PCR condition
- 5. Study of properties of nucleotide sequence : nucleotide count , translation , reverse translation
- 6. Study of in silico restriction digestion
- 7. Study of vectors
- 8. Gene finding

References:

1. Principles and techniques of Biochemistry and molecular biology (7th Ed, 2010)Keith Wilson and John Walker, Cambridge university Press

St. Xavier's College – Autonomous

Mumbai

Syllabus

For 3rd Semester Courses in M.Sc in Biotechnology

(June 2017 onwards)

Contents

Syllabus for the following courses:

Theory Courses

MS.BTS.9.01	Biostatistics And Bioinformatics
MS.BTS.9.02	Applications of Biotechnology
MS.BTS.9.03	Bioprocess Technology
MS.BTS.9.04	Environmental Biotechnology
	Practical Courses
MS.BTS.9.01PR	Bioinformatics
MS.BTS.9.02PR	Animal Cell Culture

- MS.B15.9.02PR Animal Cell Culture
- MS.BTS.9.03PR Bioprocess Technology
- MS.BTS.9.04PR Research Methodology

COURSE CODE: MS. BTS. 3.01

BIOSTATISTICS AND BIOINFORMATICS

Overall Learning Objective:

- To understand core applied biostatistical concepts and methods.
- To deepen the knowledge in basic computational science for the management and analysis of biological data

Introduction to Biostatistics

Learning objective:

• To understand the basic concepts of biostatistics

Topics:

UNIT 1

- 1. Measure of central tendency (mean, median and mode)
- 2. Measure of dispersion (Standard deviation, variance, and coefficient of variance)
- 3. Z- test (one mean, two means and paired)
- 4. t- Test (one mean, two means, paired and cochran's)
- 5. χ^2 test (test of homogenecity, Independence Goodness of fit)
- 6. P- value for all tests (Reading tables)
- 7. Regression
- 8. ANOVA

UNIT 2

Applied Biostatistics

15 Lectures

15 Lectures

Learning Objective:

• To understand the application of biostatistics in biological study

Topics:

- 1. Statistical Experimentation : Introduction , test , control
- 2. Experimental design and terms
- 3. Theory of probability, density function (Estimation etc)
- 4. The standard Normal distribution
- 5. Hypothesis Testing : step, errors
- 6. Nonparametric tests: Sign , Wilcoxon, and Mann- Whitney test

Total Lectures: 60

UNIT 3 Databases and Sequence Alignment

15 Lectures

Learning Objectives:

• To understand and access various types of data relating to molecular biology available on internet portal.

• To understand to the concept of sequence alignment of biological macromolecules

Topics:

1. Introduction to Bioinformatics: Goal, Scope, application (outline), new themes

2. Study of biological databases

- a. Concept of databases
- b. Biological data and databases, classification Examples of databases (sequence, structure, classification, genome, microarray, secondary databases etc.)
- c. Submission of sequences, biological data retrieval and study of data formats
- d. Pitfalls of biological databases and annotations of biological data.

3. Sequence alignment :

- a. Pairwise sequence alignment : sequence homology, similarity and identity , methods , scoring matrices, BLAST: types , method , parameters.
- b. Multiple sequence alignment: scoring function goal and application , principle and methods, tools used.
- c. Editing MSA: Jalview , Sequence logo

4. Phylogenetic analysis and importance :

- a. Phylogenetics basics: Molecular Evolution and Molecular Phylogenetics, Gene Phylogeny versus Species Phylogeny, Forms of Tree Representation
- b. Phylogenetic Tree Construction Methods and Programs: distance based, and character-based methods.

UNIT 4 Protein Structure Visualization, Prediction, Genes and Genome Analysis

15 Lectures

Learning Objective:

- To analyse the protein sequences, retrieve and visualise protein structures.
- To analyse gene sequences and its expression at the genome and proteome level

Topics:

- 1. Study of proteins
 - a. Protein structure prediction: secondary structure and tertiary structure (Homology modelling)
 - b. Protein structure comparison, visualization, and significance
 - c. Bioinformatics basis of protein structural classification: CATH
 - d. Protein families, conserved domains, motifs
- 2. DNA/ gene sequence analysis:
 - a. Gene prediction : Categories of Gene Prediction Programs, Gene Prediction in Prokaryotes, and eukaryotes
 - b. DNA motifs and its significance

- 3. Genomics and proteomics
 - a. Genome mapping, assembly, and comparison
 - b. Functional genomics: Microarrays and SAGE
 - c. Next-generation sequencing (NGS)
 - d. Proteomics: Technology of Protein Expression Analysis

Reference Books:

Biostatistics:

- 1. Wayne W Daniel (1999), Biostatistics: a foundation for analysis in health sciences, John Wiley, and sons
- 2. N Gurumani (2004), Introduction to Biostatistics, MJP Publishers.

Bioinformatics:

- David Mount (2004) Bioinformatics: Sequence and Genome Analysis. 2nd edition, Cold Spring Harbor Laboratory Press, New York.
- Jonathan Pevsner (2009) Bioinformatics and Functional Genomics. 2nd edition, John Wiley and Sons, New Jersey.
- 3. Teresa K. Attwood and D. J. Parry Smith (1999) Introduction to Bioinformatics. 1st edition , Pearson Education Limited , England
- Andreas D. Baxevanis and B. F. Francis Ouellette (2001) Bioinformatics A Practical Guide to the Analysis of Genes and Proteins. 2nd edition, A John Wiley & Sons, Inc., Publication
- Arthur M. Lesk (2005) Introduction to Bioinformatics, 2nd edition Oxford University Press
- 6. Jean-Michel Claverie and Cedric Notre's dame Bioinformatics for Dummies, 2nd edition, Wiley Publishing, Inc.
- 7. Jinn Xiong(2006), Essential Bioinformatics, 1st edition, Cambridge university press,

COURSE CODE: MS. BTS. 9.02 Application of Biotechnology

Overall learning objective:

Total Lectures: 60

- To understand basic concepts of human embryology
- To understand the potential of animal cells, organ engineering and genetic engineering in Therapeutics and Industrial Biotechnology

UNIT 1 Human Embryogenesis and *In Vitro* Fertilization 15 Lectures

Learning objectives:

• To understand the biology and technology of human embryo generation

Topics:

- 1. Embryonic development stages [fertilisation, post fertilisation, Implantation]
- 2. Establishment of germ layers and their fate
- 3. Immunology of pregnancy
- 4. IVF Technology

UNIT 2 Stem cells and tissue engineering 15 Lectures.

Learning Objective:

- To understand the potential of stem cell therapeutics
- To understand the concepts in generation of human tissues *in vitro*

Topics:

- 1. Types of stem cells: ES, Adult, IPSCs, Cancer stem cells
- 2. Characterisation of stem cells
- 3. Applications of stem cells in therapeutics
- 4. Ethical issues and regulations in stem cell research
- 5. Fundamentals of tissue engineering: Growth Factors, morphogens, Extracellular Matrix, Cell adhesion and migration, Inflammatory and Immune responses to tissue engineered devices.
- 6. Biomaterials : Polymeric scaffolds , Calcium Phosphate Ceramics ,Bio mimetic materials
- 7. Applications of tissue engineering

Syllabus for Core Courses in M. Sc Biotechnology. St. Xavier's College –Autonomous, Mumbai.

UNIT 3 Biopharmaceuticals

15 Lectures

Learning objective:

• To understand the method of production and uses of modern-day therapeutic molecules.

Topics:

- 1. Scale up in cell culture (types of bioreactors for suspension and monolayer cultures and process control)
- 2. Therapeutic peptides/ Biosimilars- production and dynamics
 - a. Production methodology
 - b. Pharmacokinetics and Pharmacodynamics
 - i. Insulin
 - ii. Tissue plasminogen activator
 - iii. Interferon alpha
 - iv. Erythropoietin
 - v. Vaccines
 - vi. Monoclonal antibodies

UNIT 4: Molecular Farming and Protein Engineering

Learning Objectives:

• To understand the application of genetic engineering techniques in therapeutics and industrial biotechnology

Topics:

- Chloroplast engineering
- Edible vaccine
- Directed mutagenesis oligonucleotide directed, and PCR amplified.
- Protein engineering increasing enzymatic activity, stability, and specificity; modifying metal cofactor requirements.

Reference Books:

- 1. Kaushik Deb and Satish Totey. (2009) Stem Cells Basics and Applications. Tata McGraw Hill.
- 2. Gary Stein and Maria B et al. (2011) Human Stem Cell Technology and Biology. Wiley Blackwell.
- 3. R. Ian Freshney, Glyn N. Stacey, Jonathan M. Auerbach. (2007) Culture of Human Stem Cells. John Wiley & Sons
- 4. Robert Lanza, Robert Langer, Joseph P. Vacanti. (2011) Principles of Tissue Engineering. Academic Press.
- 5. Inderbir Singh & GP Pal. (2007) Human Embryology. MacMillan Publishers.

- 6. Thomas W. Sadler. (2009) Langman's Medical Embryology. Lippincott Williams & Wilkins.
- 7. Scott F Gilbert.(2000) Developmental Biology, 6th edition. Sinauer Associates.
- 8. Gordana Vunjak-Novakovic, R. Ian Freshney. (2006) Culture of Cells for Tissue Engineering. John Wiley & Sons.
- 9. Daan J. A. Crommelin, Robert D. Sindelar. (2002) Pharmaceutical Biotechnology: An Introduction for Pharmacists and Pharmaceutical Scientists. Taylor & Francis.
- 10. Bernard R. Glick, Jack J. Pasternak, Cheryl L.Patten. (2010) Molecular Biotechnology: Principles and Applications of Recombinant DNA. ASM Press.

COURSE CODE: MS. BTS. 9.03 BIOPROCESS TECHNOLOGY

Overall Learning Objective:

Total Lectures: 60

• To understand the microbial growth, fermentation, and product formation from the viewpoint of industrial purpose

UNIT 1	Principles of Bioprocess Technology	15 Lectures

Learning Objectives:

- To understand basics of bioreactor kinetics and mathematical equations regarding bioreactors.
- To understand the idea of scale-up and aeration of bioreactors in detail.

Topics:

- Industrial substrates and stoichiometry
- Kinetics of microbial growth, substrate utilization and product formation: Batch , Fed-Batch and continuous processes
- Scale up concepts with respect to fermenter design and product formation.
- Solid state fermentation
- Processes using recombinant organisms: hosts, vectors, genetic instability.

UNIT 2 Process dynamics 15 Lectures

Learning Objective:

• To study the concept of mass and heat transfer

Topics:

- Gas exchange and mass transfer: O₂ transfer, critical oxygen concentration, determining the oxygen uptake rate.
- Heat transfer
- Sterilization processes, thermal death curve, *in situ* sterilization

UNIT 3 Downstream Processing

Learning Objectives:

- To understand how to purify microbial products (extra- and intracellular) after fermentation.
- To understand the techniques used in purification of fermentation products.

Topics:

- 1. Flocculation and floatation
- 2. Filtration
- 3. Centrifugation
- 4. Cell disruption
- 5. Liquid extraction
- 6. Precipitation
- 7. Adsorption
- 8. Dialysis
- 9. Reverse osmosis
- 10. Chromatography
- 11. Crystallization and drying

UNIT 4

Industrial Products

15 Lectures

Learning objective:

• To understand source, method of production and applications of microbial products.

Topics:

- 1. Polysaccharides/ biopolymers/micro polymers- Xanthan gum, Dextran
- 2. Enzymes proteases, amylases, pectinases, lipases
- 3. Nutraceuticals Probiotics and prebiotics
- 4. Antibiotics erythromycin
- 5. Vitamin B 12
- 6. Amino acids and alcohols

References:

Bioprocess Technology

- 1. Wulf Crueger and Anneliese Crueger (1990) Biotechnology: A Textbook of Industrial Microbiology. Panima Publishers. New Delhi
- 2. Michael L. Shuler, Fikret Kargı (1992) Bioprocess Engineering: basic concepts. Prentice Hall Publishers. New York.
- 3. Stanbury P.F., Whitaker A, Hall S.J. (1999) Principles of Fermentation Technology. 2nd edition, Butterworth-Heinemann
- 4. Glazer A.N. & Nikaido H. (1995) Microbial Biotechnology: Fundamentals of Applied Microbiology. W.H. Freeman & Company, New York.

15 Lectures

COURSE CODE: MS. BTS. 9.04

ENVIRONMENTAL BIOTECHNOLOGY

Overall Learning Objective

- To comprehend the concepts of pollution, its remediation through the biotechnological intervention
- To understand the concept of Biosafety, bioethics, and Quality assurance in the context of modern biotechnology

Unit 1: Environmental pollution and management

Learning Objectives:

- To understand the aspects of environmental pollution
- To study role of biological entities in combating the environmental pollution

Topics:

- 1. Concept of Environmental Pollution; Origin of pollution; Classification and nature of Environmental Pollutants; Bioremediation, Biotransformation and Biodegradation-(specific case study)
- 2. Sources of heavy metal pollution; Microbial interactions, Microbial metal resistance; Microbial transformation; Accumulation and concentration of metals; Biosorption biotechnology and heavy metal pollution.
- 3. Solid waste management of municipal, biomedical waste and E waste management
- 4. Xenobiotics; Persistence and biomagnification of xenobiotic molecules; Microbial interactions with xenobiotics.
- 5. Environmental impacts on agriculture: Biodegradation of agricultural chemicals; GM crops and their impact on environment; Phosphate solubilization; Biofertilizers; Biological control of insect pests; Role of biopesticides/ insecticides; Biocontrol of plant pathogens; Integrated pest management-practical implementation.

Unit 2: Marine Pollution and Biodeterioration 15 lectures

Learning Objectives:

- To understand the concepts of marine ecosystem and threats
- To sensitize the learner to the pollution aspects on marine ecosystem and the possible remedial measures

Topics:

1. Types of marine environment - Physical, Chemical and Biological aspects and their interaction with marine life; Air – Sea interaction. Threats to the Marine Environment: Marine pollution-major pollutants and biological indicators (Marine microbes, algae, and crustaceans) and accumulators:

15 lectures

Total Lectures: 60

- 2. Oil pollution: Sources, composition, and its fate in marine habitats. Treatment options available
- 3. Thermal and radioactive pollution: sources, effects, and remedial measures.
- 4. Solid dumping, mining, and dredging operations: their effects on marine ecosystem.
- 5. Biofouling and biodeterioration: Agents and protection methods.
- 6. Effect of marine pollution on environment and human health and Role of biotechnology in marine pollution control.

Unit 3: Environmental Monitoring and Management

15 lectures

Learning Objectives:

- To create awareness about the organisations and process involved in environmental monitoring.
- To understand the national policies concerned with environmental management.
- To understand the role of biotechnology in the environmental management

Topics:

- 1. National Policy on Environment: National Committee on Environment and Planning (NCEP); Tiwari committee; Establishment of MoEF; National Forest Policy; National Water Policy and National Energy Policy; CPCB and SPCBs.
- 2. Environmental management : problems and need, Environmental management Plan.
- 3. Environmental impact assessment and ISO 14000
- 4. Biotechnology for management of resources: Role of environmental biotechnology in management of resources; Reclamation of wasteland; Biomass production, Biogas, and biofuel production Development of environmentally friendly processes such as integrated waste management,
- 5. White biotechnology bioplastics; Concept of environmental sustainability

Unit 4 Safety, Ethics and QA aspects in Biotechnology 15 lectures

Learning Objectives:

- To understand the concept of Biosafety ,bioethics and Quality assurance in the context of modern biotechnology
- To understand the regulatory mechanisms for Biosafety and Genetic modifications in India and at international level.
- To discuss the social and ethical issues related to plant and animal biotechnology.

Topics:

 Biosafety- history, Need for containment and levels (microorganisms, plants, and animals – both GMOs and LMOs), primary containment of biohazards, BSCs, Clean Room technology

- 2. Regulatory guidelines: both national and International for food and food ingredients produced using GMOs, GM crops and livestock.
 - a. Cartagena Protocol
 - b. Role of IBSC, RCGM, GEAC and others
 - c. Safety and Environment Impact concerns with respect to GMOs, LMOs, GM foods, Crops and Livestock.
 - d. Risk assessment , management and communication including GMP, GLP and HACCP
 - e. Generally Recognised as Safe (GRAS)
- 3. Bioethical conflicts in Biotechnology
 - a. ELSI of HGP
 - b. Ethical concerns in GM utilized for consumption, agricultural benefits, or human therapy.
- 4. Quality assurance and control: concept
- 5. Documentation SOPs and Validation overview

Reference Books:

Environmental Biotechnology:

- 1. Indu Shekhar Thakur (2006) Environmental Biotechnology: Basic Concepts and Applications, I. K. International Pvt Ltd, 2006
- 2. Gareth M. Evans and Judith C. Furlong (2003) Environmental Biotechnology Theory and Application, John Wiley & Sons Inc.
- 3. Alan H. Scragg (2006) Environmental Biotechnology, 1st edition, Oxford University Press
- 4. S.K. Agarwal (2007) Environmental Biotechnology, APH Publishing Co-operation, New Delhi
- 5. Alexander N. Glazer and Hiroshi Nikaido (2010) Microbial Biotechnology, 2nd edition, Cambridge University press.
- 6. A.G. Murugesan and C. Rajakumari (2006) Environmental Science and Biotechnology Theory and techniques MJP Publishers, Chennai
- 7. Gwendolyn Holmes Bruce *et al*, (2000), Handbook of Environmental management and technology, Wiley Intersciences Publishers

Safety, Ethics and QA aspects in Biotechnology:

- 1. Bernard R. Glick, Jack J. Pasternak, Cheryl L.Patten. (2010) Molecular Biotechnology: Principles and Applications of Recombinant DNA. ASM Press.
- Biosafety in Microbiology and biomedical laboratories, 5th Ed. (2009): CDC, NIH publication. HHS publication (21-1112)
- 3. Traavik. T and Lim Li Ching, (2007): Biosafety first. Tapir Academic Press

- N. Alexandrova, K. Georgieva & A. Atanassov (2005) Biosafety Regulations of GMOS: National and International Aspects and Regional Cooperation, Biotechnology & Biotechnological Equipment, 19:sup3, 153-172.
- 5. Secretariat of the Convention on Biological Diversity (2000). Cartagena Protocol on Biosafety to the Convention on Biological Diversity: text and annexes. Montreal.
- 6. <u>http://dbtbiosafety.nic.in</u>
- 7. <u>http://igmoris.nic.in</u>
- 8. http://www.dbtindia.nic.in/regulations/
- 9. Brauer D, 1995, Biotechnology 2nd Edition, Vol 12, Legal, Social and Ethical dimensions. VCH publications.
- Humberto Vega-Mercado, Michael Dekleva, Rizwan Sharnez, and Luis Baez, May 2003, HACCP: A Process Validation Tool for Ensuring Quality of Biotech and Pharmaceutical Products, *Bioprocess technology*

PRACTICALS

Overall Learning Objectives:

- To learn the basics of *in silico* analysis of biological data
- To understand experimental design for *in vitro* cytotoxicity assays.
- To learn the basic techniques in fermentation.
- To understand the basis of research methodology
- To plan and execute experiments and analyse the data obtained.

COURSE CODE: MS. BTS. 9.01PR BIOINFORMATICS

- 1. Study of databases
- 2. Sequence alignment :
 - a. Nucleotide BLAST
 - b. Protein BLAST
 - c. Study of orthologous and paralogous sequences using BLAST.
- 3. Sequence alignment and applications :
 - a. Multiple sequence alignment
 - b. Phylogenetic analysis
 - c. Studying consensus sequences
 - d. Generation of sequence Logo using multiple aligned sequences.
- 4. Analysis of nucleotide and protein sequences
 - a. Gene finding
 - b. Motif finding
 - c. Conserved domain identification
- 5. Classification of proteins using CATH and SCOPE.
- 6. Study of proteins:
 - a. Homology modelling
 - b. Visualization of proteins using various visualization tools.

COURSE CODE: MS. BTS. 9.02PR ANIMAL CELL CULTURE

• Cytotoxicity testing using MTT and SRB.

COURSE CODE: MS. BTS.9.03PR BIOPROCESS TECHNOLOGY

• Process development (upstream and downstream) eg. Alcohol production from the yeast *Saccharomyces cerevisiae*

COURSE CODE: MS. BTS.9.04PR Research Methodology

- 1. Research approaches, Research Process and Criteria for Good Research
- 2. Research problem: definition, techniques involved, illustration.
- 3. Research design : meaning , Important Concepts and basic Principles of Experimental Designs
- 4. Research ethics
- 5. Internal Project

References:

- 1. David Mount (2004) Bioinformatics: Sequence and Genome Analysis. 2nd edition, Cold Spring Harbor Laboratory Press, New York.
- 2. Culture of Animal Cells, R Ian Freshney, Wiley Publications, $5^{th}\,/\,6^{th}\,Ed$
- 3. Methods in Biotechnology (1997), Hansmauder Schmauder, Taylor and Francis Publications
- 4. C.R. Kothari, Research methodology: methods and techniques, 2nd edition, New Age International Publishers, 2004
- 5. James Morris, A students guide to writing in the life sciences, The President and Fellows of Harvard University, 2007

St. Xavier's College – Autonomous

Mumbai

Syllabus

For 4th Semester Courses in M. Sc in Biotechnology

(October 2017 onwards)

Contents

Syllabus for the following courses:

THEORY COURSES

MS.BTS.10.01	Drug designing and Nanotechnology
MS.BTS.10.02	Entrepreneurship and IPR
	PRACTICAL COURSES
MS.BTS.10.01PR	Intellectual Property Rights
MS.BTS.10.02PR	Entrepreneurship
MS.BTS.10 PR	Research project

COURSE: MS. BTS. 10.01DRUG DESIGNING AND NANOTECHNOLOGYOverall Learning Objective:60 Lectures

- To gain an exposure to recent techniques in biopharmaceutical drug discovery
- To study the concept of nanotechnology, synthesis of nanoparticles and its applications

Unit 1 Drug Development Learning Objective:

15 Lectures

- To understand the quantitative structure activity relationships of drug molecules
- To know the steps of drug discovery process

Topics:

- 1. Steps involved in drug discovery, Production and characterisation, Preclinical studies, and Validation studies.
- 2. Computer aided drug designing and docking.
 - a. General Principles of CADD
 - b. Types of drug designing
 - Ligand based molecular interactions.
 - Structure based Drug designing.
 - \circ Examples of Ligand and structure-based drug designing
 - c. Applications and importance of CADD

Unit 2 Clinical Research

15 Lectures

Learning objective:

• To understand the relevance of clinical research in drug discovery process

Topics:

- 1. Introduction
- 2. Good clinical practice guidelines
- 3. Ethical aspects of clinical research
- 4. Clinical research methodologies and management
- 5. Regulatory requirements
- 6. Data management

15 Lectures

Page 49 of 54

Learning Objective:

• To understand the role of monitoring of drugs before and after release by regulatory authorities

Topics:

- 1. Introduction to Adverse Events and Classifications
- 2. Scope of Drug Safety Problems
- 3. Introduction to Pharmacovigilance
 - History and development of pharmacovigilance
 - Importance of safety monitoring / Why pharmacovigilance
- 4. National and international scenario
 - Pharmacovigilance in India
 - Pharmacovigilance global perspective
 - WHO international drug monitoring programme
- 5. Pharmacovigilance methods
 - Passive surveillance Spontaneous reports and case series
 - Stimulated reporting
 - o Active surveillance Sentinel sites, drug event monitoring and registries
 - Comparative observational studies Cross sectional study, case control study and cohort study
- 6. Adverse drug reaction reporting
 - Spontaneous reporting system
 - Reporting to regulatory authorities
- 7. Drug Safety and FDA
- 8. ICH and FDA
- 9. Investigational New Drug Applications
- 10. Documents and Communication (Review period and approval period)

Unit 4

Nanotechnology in medicine

15 Lectures

Learning objective:

- To study the concept of nanotechnology, synthesis of nanoparticles and its applications
- To understand the applications of emerging nanotechnology in treating diseases **Topics**:
 - 1. Introduction to nanotechnology:
 - a. Introduction to nanotechnology and bio-nanotechnology

b. Important nanoparticles / materials, bio nanorobots/molecular motors nano motors and their uses (in brief)

2. Synthesis of nanoparticles:

a. Common Strategies for synthesis of nanomaterials with examples, (Biological methods for nanoparticle synthesis)

b. Characterization methods (Brief outline)

- 3. Applications of nanotechnology:
 - Medical nanotechnology
 - Nano pharmaceuticals : Nanobiotechnology for drug discovery and drug delivery
 - Nano-diagnostics : Nano particles for the detection and treatment of cancer, Nano arrays for molecular diagnostics , Nanoparticles for Molecular Diagnostics, nano barcode

• Role of nanotechnology in biological therapy, nano devices in medicine and surgery

References:

- 1. Daan J. A. Crommelin, Robert D. Sindelar. (2002) Pharmaceutical Biotechnology: An Introduction for Pharmacists and Pharmaceutical Scientists. Taylor & Francis.
- 2. Thomas M. Jacobsen, Albert I. Wertheimer. (2010) Modern Pharmaceutical Industry: A Primer. Jones & Bartlett Publishers.
- 3. Oliver Kayser, Rainer H. Müller. (2006) Pharmaceutical Biotechnology. John Wiley & Sons.
- 4. Gary Walsh. (2006) Biopharmaceuticals: Biochemistry and Biotechnology. John Wiley & Sons.
- Tommy Liljefors, Povl Krogsgaard-Larsen, Ulf Madsen. (2010) Textbook of Drug Design and Discovery. 4th Edition. CRC Press
- 6. Mansoor M. Amiji (Editor). (2006) Nanotechnology for Cancer Therapy. CRC Press.
- 7. Gabor , Hornyak, Joydeep Dutta , Harry F. Tibbas ,(2009) Fundamentals of Nanotechnology , CRC Press
- 8. Kewal K. Jain (2008) The handbook of nanomedicine. Humana Press
- 9. Scott E. McNeil (2009), Nanoparticle therapeutics: a personal perspective, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, Vol 1 Issue 3

COURSE: MS. BTS. 10.02 ENTREPRENEURSHIP AND IPR

Overall learning objective:

- To Understand the commercial potential of research and business in Biotechnology
- To understand the concepts of Intellectual Property Rights and its applications in Biotechnology

Unit 1 Management principle and entrepreneurship

Objective:

- To provide students from a non-management orientation with a brief idea on the various functions in an organization, the role of various departments and how they function together in the creation of a successful and profitable company.
- To make students aware of entrepreneurship and motivate them to identify opportunities and dispel any fears they may have even in considering the same through Case Studies and talks by Entrepreneurs.

Unit 1: Management principles

- 1. Marketing Management :
 - Understanding the role of marketing in Organizations
 - Marketing Research and its importance
 - Understanding the Microenvironment (Strengths and Weaknesses vis-à-vis your company and its competition) and the Macro Environment (Opportunities and Threats – PEST Analysis)
 - Exit strategy.
 - Brief Introduction to Demand Forecasting
 - Market Segmentation and Target Markets; 5P's (Product, Price, Place, Promotion, People)
- 2. Finance Management :
 - Understanding the role of finance in Organizations
 - Financial Statements ;Taxes
 - o Interest Rates
 - o Break-even analysis
- 3. Human Resource Management
 - Understanding the role of a HR Manager in Organizations
 - \circ Interviews
 - Team building and organizational management.
- 4. Entrepreneurship
 - Concept, meaning of entrepreneurship.
 - Functions, types of entrepreneurships
 - Stages of entrepreneurial process.

15 Lectures

• Contribution of notable entrepreneurs in the field of biotechnology and applied biology. (Case studies)

Business of Biotechnology 15 Lectures

Learning objective:

• To understand the commercial applications and the current market status of biotechnology and related areas like pharmaceutical and diagnostics.

Topics:

Unit 2

- 1. Project areas in biotechnology and applied biology.
- 2. Business concept:
 - o Idea selection, brainstorming, project planning, conceptualization, and feasibility report
 - Idea generation and Product planning, process design
 - Project cost estimate, project profits
- 3. Biotechnology companies, their care and nurturing
- 4. Management in biotechnology
- 5. Growth of biotechnology industry in India
 - Rules & Regulations for set-up of Biotech companies
 - Government schemes and benefits for SME
 - Strategic Management & International market (Examples of companies and strategies adopted for their market.)

UNIT 3 Basic Concepts of Patenting

15 Lectures

Learning objective:

• To understand the rationale for patenting in biotechnology and its commercial applications

Topics:

- 1. Biotechnology and the law: objective, evolution, basic structure of gene techniques, applications, commercial potential of biotech inventions, rational for IPR protection
- 2. Patenting biotech inventions: objectives, concepts of novelty and concepts of inventive step, microorganisms, and moral issues in patenting biotech inventions
- 3. Plant varieties protection: objectives, justification, criteria for protection, international position, plant varieties protection in India, plant varieties protection under TRIPs
- **4.** Patenting issues related to Biosimilars.

UNIT 4 Geographical Indications and Traditional Knowledge: Concepts and Case Studies 15 Lectures

Learning Objective:

• To understand the concepts of geographical indications, traditional knowledge, and their utility in biotechnology

Topics:

- 1. Protection of geographical indications : objectives, justification, international position, multilateral treaties, national level, Indian position
- 2. Protection of traditional knowledge : objective, concept of traditional knowledge, holders, issue concerning, bioprospecting and bio-piracy, alternative ways, protectability, need for a sui generis regime, traditional knowledge on the international arena, traditional knowledge at WTO, traditional knowledge at the national level, traditional knowledge digital library.
- 3. Case study related to basmati rice, erythropoietin, t-PA, glivec.
- 4. Permissible and non-permissible biotech patenting in India

Reference books:

- 1. Dynamics of Entrepreneurial Development & Management, Vasant Desai ,Himalaya Publishing House
- 2. "Entrepreneurship Development small Business Enterprises", Poornima M Charanthmath Pearson Education – 2005
- 3. Entrepreneurship Development" S S Khanka S Chand
- Basic Biotechnology, Colin Ratledge and Bjorn Kristiansen, Cambridge University Press- 2nd Ed,2001
- 5. Prabudha Ganguly, (2001) Intellectual Property rights- unleashing the knowledge economy, Tata McGraw Hill Publishing Company Ltd.
- 6. Alexandra George (2006) Globalisation and Intellectual Property, Ashgate publishing company
- 7. Maarten Bode, (2008) Taking traditional knowledge to the market, Orient Longman Publishers
- 8. Sudeep Chaudhuri (2005), the WTO and India's Pharmaceutical industry, Oxford University Press.
- 9. Vandana Shiva (2002), Protect or Plunder? Understanding Intellectual Property Rights, Zed Books.
- 10. David Pressman (2016) Patent It Yourself 18th edition, Nolo Publishers

PRACTICAL

Overall Learning Objective:

• To train the students in different aspects of scientific research and entrepreneurship

MS.BTS.10.01PR: IPR ; Searching patents and analysing patents MS.BTS.10.02PR: Entrepreneurship

MS.BTS.10 PR: Project for 4-5 months with Dissertation -