St. Xavier's College (Autonomous), Mumbai

Syllabus of the courses offered by the Department of Physics BSc Physics (2016-2017) 1st Semester Syllabus for Core and Applied Component Courses in PHYSICS. St. Xavier's College –Autonomous, Mumbai

St. Xavier's College – Autonomous Mumbai

Syllabus For 1st Semester Courses in PHYSICS (Academic Year 2016 - 2017 onwards)

Contents: Theory Syllabus for Courses: S.PHY.1.01 – Mechanics I S.PHY.1.02 – Electricity and Magnetism

Practical Course Syllabus for: S. PHY.1. PR

F.Y. B.Sc. PHYSICS

Course: S.PHY.1.01

Title: Mechanics

Learning Objectives:

To study the fundamentals of Mechanics Number of lectures: 45

Unit 1. Force, Work and Energy (15 lecture)

NEWTON'S LAWS OF MOTION

Force and Interactions, Newton's First Law, Newton's Second Law, Mass and Weight, Newton's Third Law, Free-Body Diagrams Questions/Exercises/Problems

APPLYING NEWTON'S LAWS

Using Newton's First Law: Particles in Equilibrium, Using Newton's Second Law: Dynamics of Particles, Frictional Forces, Dynamics of Circular Motion, The Fundamental Forces of Nature, Questions/Exercises/Problems

WORK AND KINETIC ENERGY

Work, Kinetic Energy and the Work–Energy Theorem, Work and Energy with Varying Forces, Power Questions/Exercises/Problems

Unit 2. Potential energy, Momentum and Rotation (15 lecture)

POTENTIAL ENERGY AND ENERGY CONSERVATION

Gravitational Potential Energy, Elastic Potential Energy, Conservative and Non conservative Forces, Force and Potential Energy, Energy Diagrams Questions/Exercises/Problems

MOMENTUM, IMPULSE, AND COLLISIONS

Momentum and Impulse, Conservation of Momentum, Momentum Conservation and Collisions, Elastic Collisions, Center of Mass, Rocket Propulsion Questions/Exercises/Problems

ROTATION OF RIGID BODIES

Angular Velocity and Acceleration, Rotation with Constant Angular Acceleration, Relating Linear and Angular Kinematics, Energy in Rotational Motion, Parallel-Axis Theorem, Moment-of-Inertia Calculations, Questions/Exercises/Problems

Unit 3. Rotation, Fluids and Gravitation (15 lecture)

DYNAMICS OF ROTATIONAL MOTION

Torque, Torque and Angular Acceleration for a Rigid Body Rigid-Body Rotation About a Moving Axis Work and Power in Rotational Motion, Angular Momentum, Conservation of Angular Momentum, Gyroscopes and Precession, Questions/Exercises/Problems

FLUID MECHANICS

Density, Pressure in a Fluid, Buoyancy, Fluid Flow, Bernoulli's Equation, Viscosity and Turbulence, Questions/Exercises/Problems

GRAVITATION

Newton's Law of Gravitation, Weight, Gravitational Potential Energy, The Motion of Satellites, Kepler's Laws and the Motion of Planets, Spherical Mass Distributions, Apparent Weight and the Earth's Rotation, Black Holes, Questions/Exercises/Problems

Reference University Physics, Sears &Zemansky, Young and Freedman, Pearson Fundamentals of Physics, Halliday and Resnick

F.Y. B.Sc. PHYSICS

Course: S.PHY.1.02

Title: Electricity and Magnetism

Learning Objectives:

To study the fundamentals of Electricity and Magnetism Number of lectures: 45

Unit I: ELECTROSTATICS

Charges and fields

Electric Charge, Conservation of Charge Quantization of Charge, Coulomb's Law, Energy of a System of Charges, Electrical Energy in a Crystal Lattice, The Electric Field, Charge Distributions, Flux, Gauss's Law, Field of a Spherical Charge Distribution, Field of a Line Charge, Field of an Infinite Flat Sheet of Charge, The Force on a Layer of Charge, Energy Associated with the Electric Field, Problems

The electric potential

Line Integral of the Electric Field, Potential Difference and the Potential Function, Gradient of a Scalar Function, Derivation of the Field from the Potential, Potential of a Charge Distribution, Potential of Two Point Charges, Potential of a Long Charged Wire, Uniformly Charged Disk, Divergence of a Vector Function, Gauss's Theorem and the Differential Form of Gauss's Law, The Divergence in Cartesian Coordinates, The Laplacian, Laplace's, Distinguishing the Physics from the Mathematics, The Curl of a Vector Function, Stokes' Theorem, The Curl in Cartesian Coordinates, The Physical Meaning of the Curl, Problems

Unit-II: Capacitors, Electric current and magnetic field [15lectures] Electric Field around conductors

Conductors and Insulators, Conductors in the Electrostatic, The General Electrostatic Problem; ,Uniqueness Theorem, Some Simple Systems of Conductor, Capacitance and Capacitors, Potentials and Charges on Several, Energy Stored in a Capacitor, Other Views of the Boundary-Value Problem, Problems

Electric current

Electric Current and Current Density, Steady Currents and Charge Conservation, Electrical Conductivity and Ohm's Law, The Physics of Electrical Conduction, Conduction in Metals, Semiconductors Circuits and Circuit Elements, Energy Dissipation in Current, Electromotive Force and the Voltaic Cell, Networks with Voltage Sources, Variable Currents in Capacitors and Resistors, Problems

The Magnetic field

Definition of the Magnetic Field, Some Properties of the Magnetic Field, Vector Potential, Field of Any Current-Carrying Wire, Fields of Rings and Coils, Change in B at a Current Sheet, How the Fields Transform, Rowland's Experiment, Electric Conduction in a Magnetic Field: The Hall Effect, Problems

Unit III: EMI and AC circuits

[15 lectures]

Electro-Magnetic Induction

Faraday's Discovery, A Conducting Rod Moving through a Uniform, Magnetic Field, A Loop Moving through a Non uniform, Magnetic Field, A Stationary Loop with the Field Sources Moving, A Universal Law of Induction, Mutual Inductance, A Reciprocity Theorem, Self-inductance, A Circuit Containing Self-inductance, Energy Stored in the Magnetic Field, Problems,

Alternating Current circuit

A Resonant circuit, Alternating Current, Alternating-Current Networks, Admittance and Impedance, Power and Energy in Alternating-Current Circuits, Problems

References:

Electricity and Magnetis - EDWARD M. PURCELL, CAMBRIDGE UNIVERSITY PRESS University Physics, Sears & Zemansky, Young and Freedman, Pearson

[15 lectures]

Practical Course: S.PHY.1.PR F.Y.B.Sc Physics

In the First Semester each batch of students will come to Physics lab for 8 weeks (excluding all the holidays) that is 16 lab sessions of 2 and half hour each. Out of these we plan to utilize 4 lab sessions (8 periods of 50 min each or 10hrs) to train them for learning Physics through Scientific Inquiry.

Objectives:

- 1. Understanding of the concepts of knowledge and inquiry
- 2. Ability for rational inquiry
- 3. Mindset for Rational Temper

Understanding of the concepts of knowledge and inquiry,

In these sessions student would learn,

- Appreciation for knowledge and its justification,
- Concepts of rational vs. irrational and subjective vs. objective inquiry,
- Types of reasoning, predictions/conjectures, theoretical frameworks, laws, and models, Observational inquiry and inquiry

Ability for rational inquiry

In these sessions student would enhance their ability to,

- Careful, systematic and relevant observations and making observational reports,
- Design and conduct experiments,
- Notice and formulate patterns in observations and experiments,
- Establish observational generalizations based patterns,
- Explore and establish the causal factors of observational generalizations, with an awareness of the distinction between causes and correlations,
- Explain the generalizations in (4) and (5) either within an existing theory, or by creating a novel theory.
- Think through concepts and ideas, clarify and define them, and evaluate the definitions;
- Unearth, explicitly articulate, and critically evaluate hidden assumptions and biases.
- Create abstract entities and processes, with clear and precise definitions
- Set up imaginary worlds in which these entities exist by formulating axioms that govern them.
- Notice the patterns in (12) and formulate them as conjectures.
- Reason in a wide range of domains, using appropriate modes of reasoning.
- Identify logical consequences and detect logical contradictions, if any.
- Prove and refute (justify, with evidence and arguments).
- Participate in rational debates without the desire to win and the fear of 'loss of face' when one is proved wrong,
- Ability to make connections across diverse domains, notice similarities and differences and at the same time apprehend the unity underlying diversity, and to integrate what is otherwise fragmented.

Mindset for Rational Temper

- Intellectual curiosity: the desire to find out about things
- The joy of learning and of finding things out on one's own

- Openness to criticism: the predisposition to accept and seek criticism in the spirit of selfcorrection
- Intellectual scepticism: the habit of doubting and questioning the values, norms, beliefs, and practices of authorities and peers, as well as one's own; unwillingness to accept assertions unless supported by adequate reasons
- Open-mindedness: willingness to modify one's beliefs and practices when confronted with good reasons to do so
- Commitment to the epistemic values of truth, rationality, and rigour, and to clarity and precision of thought and expression;
- Commitment to the ethical values of truthfulness and integrity; and
- Commitment to the well-being of the earth and all its creatures, and the avoidance of harm
- Readiness to pursue what is demanded by the above commitments
- Sequencing Problem

Reading and viewing

- Einstein, A & L, Infeld (1935) *The Evolution of Physics*, downloadable at https://archive.org/details/evolutionofphysi033254mbp
- Videos of Feynman on youtube (e.g., The Pleasure of Finding things Out)
- Mohanan, K P and T Mohanan (2015) "Region of Inexactness and related concepts
- Mohanan K P & T Mohanan (2015) Observational Inquiry

Rest of the experiments will be selected from the following list and will be conducted with skills obtained in above sessions

List of Experiments:

Paper 1:

- 1. Measurement Length, Mass, Time
- 2. Measuring Tension/breaking tension
- 3. Measurement of angle
- 4. Measurement of angular velocity/angular momentum
- 5. 'Y' by bending
- 6. 'Y' by Searls method
- 7. Bifillar suspension
- 8. Determination of gravitational acceleration
- 9. Fly wheel

Paper2:

- 1. Static Electricity (Demo).
 - 2. Capacitor designing and measurement of capacitance with DMM.
 - 3. Inductor designing and measurement of inductance with DMM.
 - 4. Mutual induction.
 - 5. Helmholtz Coil.
 - 6. Capacitor charging.
 - 7. Determination of internal resistance and pure "L" by LR circuit.
 - 8. Determination of internal resistance and pure "C" by CR circuit.
 - 9. Change in reactance of L or C with frequency of input signal.
 - 10. LCR resonance.
 - 11. Study of voltage divider and current divider circuits.
 - 12. Determination of specific resistance of a conductor.

Syllabus

For 2nd Semester Courses in PHYSICS (Academic Year 2016 - 2017 onwards)

Contents Theory Syllabus for Courses: S.PHY.2.01 - Mechanics and Thermodynamics S.PHY.2.02 - Optics

Practical Syllabus for Course: **S. PHY.2. PR**

F.Y. B.Sc. PHYSICS Course: S.PHY.2.01 Title: Mechanics and Thermodynamics

Learning Objectives:

To study the fundamentals of Mechanics and thermodynamics Number of lectures: 45

Unit 1. Oscillations and waves (15 lecture)

Equilibrium and elasticity

Conditions for Equilibrium, Centre of Gravity, Solving Rigid-Body Equilibrium Problems, Stress, Strain, and Elastic Moduli Elasticity and Plasticity, Questions/Exercises/Problems **Periodic motion**

Describing Oscillation, Simple Harmonic Motion, Energy in Simple Harmonic Motion Applications of Simple Harmonic Motion, the Simple Pendulum, the Physical Pendulum, Damped Oscillations, Forced Oscillations and Resonance Questions/Exercises/Problems

Mechanical waves

Types of Mechanical Waves, Periodic Waves, Mathematical Description of a Wave, Speed of a Transverse Wave, Energy in Wave Motion, Wave Interference, Boundary Conditions, and Superposition, Standing Waves on a String, Normal Modes of a String. Questions/Exercises/Problems

Unit 2. Sound and Thermodynamics (15 lecture)

Sound and hearing

Sound Waves, Speed of Sound Waves, Sound Intensity, Standing Sound Waves and Normal Modes, Resonance and Sound Interference of Waves, Beats, The Doppler Effect, Shock Waves, Questions/Exercises/Problems

Temperature and heat

Temperature and Thermal Equilibrium, Thermometers and Temperature Scales, Gas Thermometers and the Kelvin Scale, Thermal Expansion, Quantity of Heat, Calorimetry and Phase Changes, Mechanisms of Heat Transfer. Questions/Exercises/Problems

Thermal properties of matter

Equations of State , Molecular Properties of Matter, Kinetic-Molecular Model of an Ideal Gas, Heat Capacities, Molecular Speeds ,Phases of Matter Summary Questions/Exercises/Problems

Unit 3. Laws of thermodynamics (15 lecture) The first law of thermodynamics

Thermodynamic Systems ,Work Done During Volume Changes , Paths Between Thermodynamic States , Internal Energy and the First Law of Thermodynamics, Kinds of Thermodynamic Processes, Internal Energy of an Ideal Gas , Heat Capacities of an Ideal Gas, Adiabatic Processes for an Ideal Gas Questions/Exercises/Problems

The second law of thermodynamics

Directions of Thermodynamic Processes, Heat Engines, Internal-Combustion Engines, Refrigerators, The Second Law of Thermodynamics, The Carnot Cycle, Entropy, Microscopic Interpretation of Entropy, Questions/Exercises/Problems **References:**

University Physics, Sears & Zemansky, Young and Freedman, Pearson Fundamentals of Physics, Halliday and Resnick

F.Y. B.Sc.: PHYSICS

Course: S.PHY.2.02

Title: Optics

Learning Objectives: To acquire knowledge of fundamental optics. Number of lectures: 45

UNIT 1: Nature of Light (15 Lectures)

ELECTROMAGNETIC WAVES

Maxwell's Equations and Electromagnetic Waves Plane Electromagnetic Waves, and the Speed of Light, Sinusoidal Electromagnetic Waves, Energy and Momentum in Electromagnetic Waves, Standing Electromagnetic Waves, Questions/Exercises/Problems

THE NATURE AND PROPAGATION OF LIGHT

The Nature of Light, Reflection and Refraction, Total Internal Reflection, Dispersion, Polarization, Scattering of Light, Huygens's Principle, Questions/Exercises/Problems

UNIT 2: Light Phenomenon (15 Lectures)

GEOMETRIC OPTICS

Reflection and Refraction at a Plane Surface, Reflection at a Spherical Surface, Refraction at a Spherical Surface, Thin Lenses, Cameras, The Eye, The Magnifier, Microscopes and Telescopes, Questions/Exercises/Problems

INTERFERENCE

Interference and Coherent Sources, Two-Source Interference of Light, Intensity in Interference Patterns, Interference in Thin, the Michelson Interferometer, Questions/Exercises/Problems

UNIT 3: Light Phenomenon (15 Lectures)

Diffraction

Fresnel and Fraunhofer Diffraction, Diffraction from a Single, Intensity in the Single-Slit Pattern, Multiple Slits, The Diffraction Grating, X-Ray Diffraction, Circular Apertures and Resolving Power, Holography, Questions/Exercises/Problems

Photons

Light Absorbed as Photons: The Photoelectric Effect, Light Emitted as Photons: X-Ray Production, Light Scattered as Photons: Compton Scattering and Pair Production, Wave–Particle Duality, Probability and Uncertainty, Questions/Exercises/Problems

List Of Recommended Reference Books

University Physics, Sears & Zemansky: Young and Freedman, Pearson Fundamentals of Physics: Halliday and Resnick

F.Y.B.Sc. PHYSICS

COURSE : S.PHY.2.PR

The experiment will be from the following groups Group I

- 1. Simple pendulum
- 2. Bar pendulum
- 3. Lee's method
- 4. Capillary rise
- 5. Surface tension drop method
- 6. Use of manometer
- 7. CVAT
- 8. Determination of density of different liquids
- 9. Pascal's law
- 10. Beats
- 11. Different Thermometers
- 12. Measuring body temperature with various scales
- 13. Change of boiling point of water with pressure.

Group II

- 1. Mirrors.
- 2. Single lens: Real images and virtual images.
- 3. Combination of lens to design telescope and microscope.
- 4. Lens aberration: Spherical/ Chromatic.
- 5. Total internal reflection.
- 6. Study of prisms.
- 7. Wedge shaped film.
- 8. Newton's ring.
- 9. Study of spectra of different sources.
- 10. Transmission and reflection grating to find refractive index of liquid using Laser.
- 11. Brewster's law.

REFERENCES:

- 1. Advanced Practical Physics Worsnop & Flint
- 2. Advanced course in Practical Physics D. Chattopadhya , P.C. Rakshit& B. Saha
- 3. B. Sc. Practical Physics C. L. Arora

St. Xavier's College – Autonomous Mumbai

Syllabus For 3rd Semester Courses in PHYSICS (June 2015 onwards)

Contents: Theory Syllabus for Courses: S.PHY.3.01 - **Physical and Quantum Optics** S.PHY.3.02 -**Relativity, Astronomy and Cosmology** S.PHY.3.03 - **Electronics** Practical Course Syllabus for: S. PHY.3. PR

S.Y. B.Sc. PHYSICS

Title: Physical and Quantum Optics

Learning Objectives: To understand the interaction of light with matter. **Number of lectures: 45**

<u>Unit I</u>:Interferometry and Resolving power 1. Michelson Interferometer :

Principle, Construction, Working.Circular fringes, Localized fringes, White light Fringes, Visibility of Fringes.

Applications of Michelson Interferometer: a) Measurement of wavelength,

b)Determination of the difference in the wavelength of the two waves,c) Thickness of a thin transparent sheet, d) Standardization of the meter scale.

2.Fabry –Perot Interferometer & Etalon :

Formation of fringes, Determination of Wavelength, Measurement of difference in wavelength.

3.Resolving Power:-

Introduction, Rayleigh's criterion, Resolving Power of optical instruments, Criterion for resolution according to Lord Rayleigh, Resolving Power of a telescope, microscope, prism, plane transmission grating.

UnitII :Diffraction

1. Fresnel's Diffraction:

Introduction, Huygens-Fresnel's theory, Fresnel's assumptions, Distinction between Interference and diffraction, Fresnel and Fraunhoffer diffractions, Diffraction due to straight edge,Position of maximum and minimum intensity, Intensity at a point inside a geometrical shadow, Diffraction due to narrow slit & due to narrow wire (qualitative), Diffraction at a circular aperture and qualitative discussion of opaque circular disc.

2.Fraunhoffer diffraction :

Introduction, Fraunhoffer diffraction at a single slit, Intensity distribution in diffraction pattern due to single slit (Review), Fraunhoffer diffraction at a double slit, Distinction between single slit and double slit diffraction patterns, Plane diffraction grating, Theory of plane transmission grating, Width of principal maxima, Prism and grating spectra.

Unit III :

1.Polarization:

Introduction, Polarization by reflection, Polarization by double refraction, Malus' law Superposition of two disturbances, mathematical analysis, Phenomenon of double Refraction, Quarter wave plates and half wave plates. LCD , 3D TV.

2.Lasers:

Properties of Laser, Different types of Laser (History), Semiconductor GaAs Laser, Application of Lasers to Holography, DVDs, Laser printer .

List Of Recommended Reference Books

A text book of Optics -Subramanyam, BrijLal, Avadhanulu

Fundamentals of Optics - Jenkins and White

- Lasers Avadhanalu
- Lasers Freeman, Sears & Zemanski
- Lasers Ghatak
- Optics Eugene Hecht

C.I.A.: Problem Solving / Multiple Choice Questions, Assignments, Presentations.

(15 Lectures)

(15 Lectures)

Page 2

(15 Lectures)

Course: S.PHY.3.01

S.Y. B.Sc. PHYSICS

Course: S.PHY.3.02

Title: Relativity, Astronomy and Cosmology Learning Objective:

1)To understand the concept of change in the paradigm: from Newtonian Mechanics to Relativistic Mechanics.

2)To understand physics of stellar astronomy and cosmology. No. of Lectures:45

Unit I : Special Theory of Relativity (15 Lectures)

The Michelson- Morley experiment, The Principle of Relativity, The Lorentz transformation, Transformation of time, The Lorentz contraction, Simultaneity, Four – vectors, Relativistic dynamics, Equivalence of mass and energy, Transformation of velocities, Relativistic mass, Relativistic energy, The twin paradox, Geometric representation of Space and Time. Ref: The Feynman Lectures on Physics Vol-I- R. P. Feynman, R.B Leighton, M. Sands Add. Ref: R. Resnick - Introduction to Special Theory of Relativity.

<u>Unit</u> II: An Introduction to Stellar Astronomy

(15 Lectures)

Basic Properties of a Star: The brightness of the star, Star colour, magnitude, Effective temp of a star, its size, mass, and luminosity.

Internal Structure of a star: The Hydrostatic Equilibrium, The Radiative transfer, The Thermal Equilibrium, Energy Generation in Stars, The Sun as a Star.

Evolution of Stars

Proto stars, The Main Sequence (HR Diagrams), End stages of a star: White Dwarf, Neutron Stars and Black Holes.

Ref: The Physical Universe, An Introduction to Astrophysics by Frank Shu,

Introduction to Stellar Astrophysics: Volume 1 and 3, By Erika Bohm-Vitense, Cambridge University Press.

Additional References: Website of NASA, Wikipedia and other sources on the internet.

<u>Unit</u> III: Cosmology

(15 Lectures)

The large scale structure of the Universe, Types of galaxies, Radiation background, Doppler shift of galaxies and the Hubble's Law, The expanding Universe.

From Relativity to cosmology, Newtonian Cosmology, Weyl's Postulates, Cosmological Principal, Red Shift, Introduction to cosmological models.

The Big Bang Hypothesis: Relics of the big bang, Inflation, Radiation dominated universe, matter versus radiation, neutrino decoupling of neutrinos, Synthesis of light nuclei, Microwave background, The Dark Matter.

Ref: An Introduction to Cosmology, By J. V. Narlikar, Cambridge University Press.

Elements of Cosmology: By J. V. Narlikar, Cambridge University Press.

Additional References: Website of NASA, Wikipedia and other sources on the internet.

C.I.A.: Problem Solving / Multiple Choice Questions, Assignments, Presentations.

S.Y. B.Sc. PHYSICS

Title: Electronics

Learning Objectives: Understandingworking of basic electronic gadgets. Number of Lectures: 45

<u>UNIT I</u>: Analog Electronics

1.Transistor in CE mode:Review of CE configuration, load line, operating point, Transistor biasing ,dc& ac analysis, load line, Inherent variations of transistor parameters, Essentials of transistor biasing circuits , stability factor, Various methods of transistor biasing, Silicon versus Germanium.

2.General Amplifier Characteristics :

Concept of Amplification, Amplifier notations, Current gain, Voltage gain, Power gain, Input and Output resistance, Frequency Response, Decibels. Classification of Amplifiers Class A, B, AB, C and Push-pull

Unit II :OPAMPs and linear circuits

1. Feedback and its applications.

Introduction to feedback:Positive and negative feedback, Oscillators (loop gain, Barkhausen Criterion) Collpitts Oscillator, Wein Bridge Oscillator, RC Phase Shift Oscillator .

2. Differential Amplifier and OP AMP

Differential Amplifier, Introduction to OP AMP, Inverting mode, Non inverting mode, Voltage Follower mode, OP AMP with positive feedback: comparator, square wave generator.

<u>Unit III</u>: Digital Electronics

1. Number System:

Binary Arithmetic: Addition and subtraction using 2's complement Half adder and Full adder

2. Logic circuits

Implementation ofLogic circuit from truth tables, Sum of Product method, Product of sum method.

3. Flip Flops and their Applications

Flip Flops and Counters, R-S flip flop, Clocked R- S flip flop, D flip flop, Edge triggered J-K flip flop, Master Slave flip flop, T flip flop, 4-bit binary ripple counter (up - down mode)

Shift Register : Serial in Serial out , Serial in Parallel out , Parallel in Serial out, Parallel in Parallel out and Universal.

List Of Recommended Reference Books

- 1. Digital Principles and Aplications (4th Ed) Malvino and Leach
- 2. Modern Digital Electronics R.P. Jain
- 3. OPAMP and Applications RamakantGayakwad.
- 4. Operational amplifiers and Linear integrated Circuits -Coughlin and Driscoll
- 5. Electronics Devices and Circuits Allan Mottershead
- 6. A text book of electronics SantanuChattopadhyay
- 7. Electonic Principles -7th Edition A.P.Malvino
- 8. Electronics devices and circuit theory Boylestad ,Nashelsky

C.I.A.: Problem Solving / Multiple Choice Questions, Assignments, Presentations.

(15 Lectures)

(15 Lectures)

(15 Lectures)

(15 Lectures)

Course: S.PHY.3.03

Practicals S.Y. B.Sc. PHYSICS COURSE : S.PHY.3.PR

Group I

- 1) Constant Volume Air Thermometer.
- 2) Thermocouple
- 3) 'J' by Electrical Method.
- 4) Bifilar pendulum
- 5) Y- By Koenig's Method

Group II

- 1) Optical lever: Determination of μ .
- 2) Determination of Cauchy's constants.
- 3) Cylindrical obstacle Determination of λ .
- 4) Resolving Power of Telescope.
- 5) Diffraction Grating: Determination of λ .

Group –III

- 1) CE Amplifier: DC load line, AC load Line.
- 2) CE Amplifier: Determination of Bandwidth, Variation of Gain with Load.
- 3) CE Amplifier: R_i and R_o .
- 4) Collpitts' Oscillator.
- 5) OP AMP: Inverting Amplifier, Non inverting Amplifier, Voltage Follower.

Demonstration Experiments:

- 1) Proto-lab.
- 2) Optical fiber communications.
- 3) Diffraction experiments with Laser.

Skill Experiments:

- 1) Component testing
- 2) Spectrometer- Schuster's method.
- 3) Transistor as a switch.

REFERENCES:

- 1. Advanced Practical Physics Worsnop & Flint .
- 2. Advanced course in Practical Physics D. Chattopadhyay, P.C. Rakshit & B. Saha.
- 3. B.Sc. Practical Physics -C.L. Arora

NOTE: Minimum Four experiments from each group, two demos and all the skills have to be performed per semester and written in journal to appear for the practical examination.

St. Xavier's College – Autonomous Mumbai

Syllabus For 4th Semester Courses in PHYSICS (June 2015 onwards)

Contents: Theory Syllabus for Courses: S.PHY.4.01: Mechanics and Thermodynamics S.PHY.4.02: Quantum Mechanics S.PHY.4.03: Electricity and Magnetism Practical Course Syllabus for: S. PHY.4. PR

S.Y.B.Sc. PHYSICS

Title: Mechanics and Thermodynamics Learning Objective:Understanding Mechanics of systems around us

Number of lectures:45

<u>Unit I</u>

(i) Mechanics of System of particles:

Concept of Centre of Mass of system of particles, Conservation of Linear momentum and applications, Conservation of Angular momentum and applications, Conservative and non-conservative forces, Conservation of Mechanical Energy, Motion of systems with variable mass. Example: Rocket Motion, Conveyer belt as a numerical problem.

(ii) Collisions :

Introduction, types of collisions, Laboratory and center of mass system, Relationship between displacements and velocities, relationship between angles.

<u>Unit II</u>

(i) Damped Oscillations:

Damped Vibrations : Decay of free vibrations of a simple harmonic oscillator due to the damping force proportional to the first power of velocity, types of damping, Energy of a damped oscillator, logarithmic decrement (discuss Ballistic Galvenometer as an example), relaxation time and Quality factor.

(ii) Forced Oscillations

Forced VibrationsAnd Resonance:Forced damped harmonic oscillator, Special cases: low driving frequency, high driving frequency, Resonance, Quality factor of a driven oscillator.

(iii) Error analysis

Estimation of Errors, Propagation of Errors, Peter's formula, Gaussian Distribution.Introduction to the concept of 'significant figures'.

<u>Unit III</u>

Thermodynamic Potential and Maxwell's relations

Review of Thermodynamic Potential, Maxwells thermodynamic relations and its applications.Ist order and II nd order phase transitions . Liquefaction of Oxygen, Hydrogen, Helium and Adiabatic demagnetization .

Ref :(i) Mechanics - Keith Simon (3rd Edition)

(ii) Mechanics – H.S. Hans and S.P. Puri Tata Mc. GrawHill(2nd Ed.)

(iii)Introduction to Error Analysis - Taylor

(iv) The Feynman Lectures on Physics Vol-I- R. P. Feynman, R.B Leighton, M.Sands

(v) Brijlal ,Subramanyam, Hemne – Heat , Thermodynamics and Statistical Physics .

(vi) Evelene and Guha – Basic Thermodynamics

(vii) Saha and Srivastava – Treatise of Heat .

Additional Ref:(i)ClassicalDynamics - Thornton and Marion

(ii)Waves and oscillations – Pain

(iii)Practical Physics - Squares.

(iv)Theory of Errors in Physical Measurements - J.C. Pal.

C.I.A. Problem Solving / Multiple Choice Questions , Assignments, presentations

(15 Lectures)

(15 Lectures)

(15 Lectures)

Course: S.PHY.4.01

S.Y.B.Sc. PHYSICS

Title: Quantum Mechanics

Learning Objectives:

- 1) Learning Theoretical aspects at Quantum Level.
- 2) To know more about the insight of the atomic world.

Number of lectures:45

<u>UNIT I</u>

Introduction to Quantum Mechanics

(i)Why Quantum Mechanics? Black body radiation, Photoelectric effect and atomic spectra.Review of matter wave and wave particle duality, De Broglie's hypothesis,Davisson &GermerExperiment.

Uncertainty Principle and its consequences. Properties of matter wave and wave packet (ii)Operators, Commutation of operators, Schrodinger's wave equation (TDSE),Steady state form (TISE). Max Born interpretation of wave function, Expectation value, Properties of eigen Function,Energy quantization in Schrodinger's theory. Probability density.

<u>UNIT II</u>

Applicationsof Time-Independent Schrodinger Equation

Complete solutions of Time-Independent Schrodinger Equation for the zero potential, The step potential: Energy less than Step Height, Energy greater than Step Height, The Barrier Potential, Examples of Barrier penetrations by Particles, The square wave potential. The infinite square well potential. The Simple Harmonic oscillator(operator method)

<u>Unit III</u>

Further developments in Quantum Mechanics

Solving Schrodinger's equation in 3-dim by separation of variables method.Particle in a box (3-dim), Hydrogen atom,

Space quantization of L , Stern Gerlack Experiment, Space quantization of $S\!\!\!\!S$. Electron probability density & shapes of orbitals .

Unresolved problems in quantum mechanics.

Ref : 1) Concepts of Modern Physics - Arthur Beiser 2) Quantum Physics - Iceberg & Resnick

Additional Ref :

1) Quantum Mechanics - Ghatak, Loknathan2nd Edition

- 2) Feymann lecture series vol III- R. P. Feynman, R.B.Leighton ,M. Sands
- 3) WichmannEywind -Berkley Physics Course Quantum Physics Volume 4
- 4) Emperors New mind -Roger Penrose
- 5) Quantum Mechanics Pauling & Wilson

6) Wickepedia Stanford encyclopedia of philosophy – Quantum Measurement. (google search)

C.I.A. Problem Solving / Multiple Choice Questions, Assignments, Presentations

(15 Lectures)

(15 Lectures)

Course: S.PHY.4.02

(15 Lectures)

S.Y.B.Sc. PHYSICS Title:ELECTRICITY AND MAGNETISM Learning Objectives:

(i) To Study Applications of mathematical tools in Physics

(ii) To Study interaction of charged particles with fields

Number of lectures:45 <u>Unit I</u>

Vector Analysis:

Triple products, the ∇ operator, The gradient, divergence and the curl, product rules. The fundamental theorem of gradient divergence and curl, Spherical polar coordinates, Cylindrical coordinates, One dimensional and Three dimensional Dirac – delta function.

The theory of vector fields : Helmholtz theorem, potentials, second order derivatives

<u>UNIT II</u>

Electric Field:- Coulombs law , The electric field , Continuous charge distribution , Divergence and curl of Electrostatic fields, Field lines, Flux and Gauss's law, The divergence of E, Applications of gauss's law, The curl of E, Electric potential ,Introduction to potential , Comments on Potential ,Summary.

Electrostatic Boundary conditions : Work and energy in Electrostatic; Work done to move a charge, The energy of the point charge distribution . Comments on Electrostatic energy. Conductors, Basic properties, Induced Charges, Surface Charge and the force on a conductor, capacitors.

UNIT III

(15 Lectures)

Magnetostatics:-

Charge conservation, Current continuity equation. The Lorentz Force law, Magnetic fields, Magnetic forces, currents .

The Biot – Savart Law:- Steady currents, The magnetic field of a steady current.

The Divergence and Curl of Straight – Line Currents, The Divergence and Curl of B, Applications of Ampere's law. Comparison of Magnetostatics and Electrostatics.

Ref: Introduction to Electrodynamics -David J. Griffiths, 3 rd Edition

Additional Ref:(i) Feymann lecture series vol II

(ii) Electricity and Magnetism -Purcell-Berkley Physics Course Vol-2

C.I.A. Problem Solving / Multiple Choice Questions, Assignments, Presentations

Course: S.PHY.4.03

(15 Lectures)

(15 Lectures)

S.Y.B.Sc PHYSICS

Course :S.PHY.4.PR.

Group -I

- 1) Resonance Pendulum.
- 2) Searle's Experiment : Determination of σ , η and Y.
- 3) 'Y' by bending and To determine specific gravity of a solid
- 4) Lee's Method
- 5) Verification of Stefan's Law (Electrical Method)

Group - II

- 1) Figure of merit of a Mirror Galvanometer.
- 2) High Resistance by Mirror Galvanometer and G by half deflection method.
- 3) Passive Filters : Low pass, High Pass
- 4) To design a Band Pass filter and study it's working .
- 5) LCR transients .
- 6) C_1/C_2 by de Sauty's method (with three ratios).

Group-III

- 1) Half adder and Full adder.
- 2) Study of MS –JK flip flop and divideby 2 counter
- 3) Mod 2, Mod 5 Mod 10 Counter.
- 4) OP AMP Difference Amplifier.
- 5) Adder /Subtractor.

Demonstration Experiments:

- 1) Coupled oscillations and Resonance
- 2) Conservation of Linear momentum.
- 3) Shift Register.

Skill Experiments:

- 1) Use of Bread-board connecting Simple Circuit.
- 2) Soldering simple circuits.
- 3) Designing an experiment to minimize errors.
- 4) Measurement of charge with B.G.(C_1/C_2)

REFERENCES:

- 1. Advanced Practical Physics Worsnop&Flint .
- 2. Advanced course in Practical Physics -D. Chattopadhyay, P.C. Rakshit& B.Saha.
- 3. B.Sc. Practical Physics -C.L. Arora

NOTE: Minimum Four experiments from each group, two demos and all the skills have to be performed per semester and written in journal to appear for the practical examination.

St. Xavier's College – Autonomous Mumbai

Syllabus For 5th Semester Courses in PHYSICS (June 2015 onwards)

Contents:

Theory Syllabus for Courses: S.PHY.5.01: Classical Mechanics S.PHY.5.02: Mathematical Physics S.PHY.5.03: Electronics S.PHY.5.04: Electrodynamics S. PHY.DIP. AC. 5: Digital Image processing -I Practical Course Syllabus for: S. PHY. 5. PR Practical Course Syllabus for: S. PHY.DIP.AC. 5. PR

Course: S. PHY. 5.01

T.Y. B.Sc. PHYSICS Course: Title: Classical Mechanics Number of lectures: 60 Learning objective: To understand physical phenomena of mechanical systems

UNIT-I

(15 LECTURES)

- 1. Motion under a central force. The central force inversely proportional to the square of the distance. Parabolic orbits, Elliptical orbits. The Kepler problem. Hyperbolic Orbits: The Rutherford problem- Scattering cross section.
- 2. Newton's laws in non inertial frames-Moving origin of co-ordinates, Rotating co-ordinate systems, Laws of motion on the rotating earth, Foucault pendulum, Larmor theorem.

UNIT- II

(15 LECTURES)

Lagrange's equations: Generalized coordinates, Lagrange's equations, examples, Systems subject to constraints, examples of system subject to constraints, constants of motion and ignorable coordinates.

UNIT-III

(15 LECTURES)

The rotation of a rigid body: Motion of a rigid body in space, Euler's equations of motion for a rigid body, Euler's angles, Heavy symmetrical top (without nutation).

UNIT-IV

(15 LECTURES)

- **1.** Kinematics of moving fluids, Equation of motion for an ideal fluid, Conservation laws for fluid motion, Steady flow.
- **2.** Non linear mechanics: Qualitative approach to chaos, The anharmonic oscillator, Numerical solution of Duffing's equation, Transition to chaos: Bifurcations and strange attractors, Aspects of chaotic behavior.

References:

- 1. Mechanics Keith Simon
- 2. Classical Mechanics Herbert Goldstein
- 3. Classical Mechanics Takawale & Puranik
- 4. Classical Mechanics Adarsh Shroff
- 5. Mechanics Barkely Physics course vol.I- Kittel, Knight & Ruderman.
- 6. Fluid mechanics Raymond.
- 7. Non-Linear dynamics & chaos Persiwal & Richards.

CIA: Problem solving/ assignments

T.Y.B.Sc Physics

COURSE:S.PHY.5.02

Title: Mathematical Physics Number of Lectures: 60

Learning Objective: To understand the mathematical concepts related to physics

UNIT-I

(15 LECTURES)

- 1. Matrices: Basic definitions of Matrices, Equality and Rank, Matrix Multiplication, Inner product, Dirac bra-ket, Transposition, Multiplication (by a scalar), Addition, Product theorem, Direct product, Diagonal matrices, Trace, Matrix inversion. Orthogonal Matrices: Direction cosines, applications to vectors, orthogonality conditions : Two dimensional case, Euler angles, symmetry properties and similarity transformations, Hermitian Matrices and unitary matrices: Definitions, pauli matrices. Diagonalisation of matrices: Moment of inertia matrix, Eigen vectors and Eigen values, Hermitian matrices, anti-hermitian matrices, normal modes of vibrations, Ill conditioned systems, Functions of matrices.
- Functions of a complex variable I: Complex Conjugation, Functions of a Complex Variable, Cauchy-Riemann Conditions, Analytic Functions. Cauchy's Integral Theorem: Contour Integrals, Stokes's Theorem Proof of Cauchy's Integral Theorem, Multiply connected regions. Cauchy's Integral Formula: Derivatives, Morera's Theorem. Mapping: Translation, Rotation, Inversion, Branch Points and Multivalent Functions, Conformal Mapping.

UNIT-II

(15 LECTURES)

- 1. Functions of a complex variable II: Laurent Expansion: Taylor Expansion, Schwarz Reflection Principle, Analytic Continuation, Laurent series. Singularities, Poles, Branch Points, Calculus of Residues: Residue Theorem, Evaluation of definite integrals, Cauchy Principle value.
- **2. Differential Equations:** Review of first order ODEs, Second Order ODEs: Inhomogeneous Linear ODEs and particular solutions, Inhomogeneous Euler ODE, Inhomogeneous ODE with constant coefficients, Linear Independence of Solutions.

UNIT-III

(15 LECTURES)

- **1. Fourier Series and Transforms:** Review of Fourier series, Complex Fourier Series, Abel's Theorem, Properties of Fourier Series, Convergence, Integration, Differentiation.
- 2. Integral Transforms: Definitions and Linearity. Fourier Transforms, Development of the Inverse Fourier Transform, Inverse Fourier-Transform Exponential Form, Dirac Delta Function Derivation from Fourier transform. Laplace Transforms, inverse Laplace transforms, solving differential equations using Laplace transforms.

UNIT-IV

(15 LECTURES)

- 1. Legendre Polynomials : Physical Basis, power series, differential equations, Generating function, Recurrence relations, upper and lower bounds for $Pn(\cos\Theta)$, Orthogonality, applications to electrostatics.
- 2. Bessel Functions of the first kind, Jn(x):, Bessel's Differential Equations, Generating Function for Integral Order, Recurrence Relations and its applications. Integral Representations, Orthogonality, Normalization.

Main Reference: - Mathematical Physics - H.K. Dass.. Additional Ref:

- 1. Introduction to Mathematical Physics Charlie Harper.
- 2. Mathematical Physics A. K. Ghatak
- 3. Mathematical Physics Arfken & Weber
- 4. Complex Variables- M.Spiegel, Schaum series
- 5. Laplace's Transforms- M.Spiegel, Schaum series

CIA: Problem solving/ assignments

T. Y. B.Sc: Physics Title: Electronics Number of lectures: 60

Learning objective: To understand the technology of different electronic devices

<u>UNIT-I</u>

- **1. Transistor multivibrators:** Astable, Monostable and Bistable Multivibrators, Schmitt trigger.
- **2. 555 Timer:** Block diagram, Astble operation (with VCO) Self Study: Monostable and Triggered linear ramp generator.
- **3.** Field effect transistor: JFET: Basic ideas, Drain Curve, The transconductance curve, Biasing in the ohmic and the active regions, calculation of transconductance, common source amplifier, analog switch multiplexer, voltage controlled resistor, Current sourcing. MOSFET : Depletion and enhancement mode, operation and characteristics, digital switching. CMOS-Introduction.

<u>UNIT-II</u>

(15 LECTURES)

- 1. Differential Amplifier using transistors: The differential Amplifier, DC and AC analysis of a differential Amplifier, Input characteristics, effect of bias and offset current and voltage on output, comman mode gain, CMRR, current mirror modification for improvement of parameters, Transistorised circuit of 741 OPAMP IC.
- **2. Op Amp applications:** Comparator, Schmitt trigger, Integrator, Differentiator, Log amplifier, square wave generator, active filters.

UNIT-III

(15 LECTURES)

- **1. Thyristors:** SCR-Working, Equivalent circuit, important terms, I-V Characteristics, SCR as a switch, Half wave rectifier and Full wave rectifier.
- **2. Optoelectronic Devices :** Photoresistance (LED, LDR), Photo-diode, Photo transistor, Optocoupler.
- **3.** Logic families : Standard TTL NAND, TTL NOR, Open collector gates, Three state TTL devices, MOS inverters, CMOS characterictics, CMOS NAND and NOR gates.
- 4. Self Study: DIAC, TRIAC and their applications.

UNIT-IV

(15 LECTURES)

- 1. Electronic communication techniques :Radio broadcasting, Transmission and reception, Modulation, Amplitude modulation, Modulation factor, Analysis of amplitude modulated wave, Side band frequencies in AM wave, Transistorised amplitude modulator, Power in AM wave, Limitations of AM, Frequency modulation (qualitative), Pulse modulation (qualitative), Digital Modulation (qualitative).
- 2. **Optical communication:** principle and application of of fiber optics.

COURSE:S.PHY.5.03

(15 LECTURES)

References :

- 1. Electronics Principles.- A.P. Malvino and D.J. Bates
- 2. Digital Principles and Applications(4th ed.) Malvino and Leach
- 3. Electronic communication systems-Kennedy
- 4. Functional Electronics. K.V. Ramanan
- 5. Integrated Electronics Millman and Halkias
- 6. Roddy and Collen
- 7. Principles of Electronics V. K. Mehta and Rohit Mehta. CIA: Problem solving/ assignments

T.Y.B.Sc.: Physics Title: Electrodynamics Number of Lectures: 60

Learning objectives: To understand the fundamentals and applications of classical electrodynamics

<u>UNIT-I</u>

(15 LECTURES)

- 1. Laplace's equation in one, two and three dimensions. Boundary conditions and Uniqueness theorems (without proof), conductors. The classic image problem, Induced surface charge, force and energy.
- 2. Dielectrics, Induced Dipoles, Alignment of polar molecules, Polarization, Bound charges and their physical interpretation, Gauss' law in presence of dielectrics. A deceptive parallel, Susceptibility, Permittivity, Dielectric constant, Energy in dielectric systems.

UNIT-II

- 1. Diamagnets, Paramagnets and Ferromagnets, Magnetization, Bound currents and their physical Interpretation, Ampere's law in magnetized material's, A deceptive parallel, Magnetic susceptibility and permeability.
- 2. Energy in magnetic fields, Electrodynamics before Maxwell, Maxwells correction to Ampere's law, Maxwell's equations, Magnetic charge, Maxwell's equations in matter, Boundary conditions.

UNIT-III

(15 LECTURES)

(15 LECTURES)

- **1.** The continuity equation, Poynting's Theorem , Newton's third law in Electrodynamics.
- 2. The wave equation for **E** and **B**, Monochromatic Plane waves, Energy and Momentum in electromagnetic waves, Propagation in linear media, Reflection and transmission of em waves at normal and oblique incidence.

UNIT-IV

(15 LECTURES)

- **1.** Relativity and electrodynamics
- **2.** Electromagnetic waves in conductors, Reflections at a conducting surface, The frequency dependence of permitivity, wave guides.
- **3.** Potentials and Fields: The potential formulation, Scaler and vector potentials, Gauge transformations, Coulomb gauge and Lorentz gauge.

References:

- 1) Introduction to Electrodynamics A.Z. Capria and P.V. Panat
- 2) Engineering Electrodynamics William Hayt Jr. & John H. Buck
- 3) Electricity and Magnetism Navina Wadhwani
- 4) Feynman lectures, vol II Lorrain and Corson
- 5) Berkely Physics Vol II, Electricity and Magnetism Purcell
- 6) Introduction to Electrodynamics 3rd Edition David J. Griffiths

CIA- Problem Solving / assignments

COURSE:S.PHY.5.04

Practicals T.Y.B.Sc. Physics Minimum four experiments to be performed from each group

Group I: Mechanics and optics

- 1. Determination of 'g' by Kater's Pendulum
- 2. Measurement of surface tension of mercury by Quincke's method
- 3. Flat spiral spring: Determination of Y, η , and σ
- 4. Resolving power of prism with the skill of optical levelling
- 5. Biprism

Group II: Electricity and Magnetism

- 1. Determination of Mutual inductance using moving coil galvanometer
- 2. Hysteresis using magnetometer
- 3. Maxwell's bridge
- 4. FET characteristics and its use as VVR
- 5. SCR characteristics

Group III: Electronics

- 1. Transistorised Astable multivibrator with the skill of circuit designing
- 2. Astable multivibrator using OPAMP with the skill of using Bread Board
- 3. Transistorised Bistable multivibrator or Schmitt trigger
- 4. 555 timer: Astable mode and VCO using AC signal with the skill of soldering
- 5. To Fourier analyse a Square/Triangular waveform

Group IV: Project

One project equivalent to 10 lab turns

References:

- 1. Advanced course in practical physics D. Chattopadhyay, P.C. Rakshit& B. Saha
- 2. B. Sc. Practical physics Harnam Singh
- 3. B. Sc. Practical physics C. L. Arora
- 4. Practical physics C. L. Squires
- 5. University Practical physics D. C. Tayal

T.Y. B.Sc. PHYSICS

Course: S. PHY.DIP. AC. 5

Title: Digital Image Processing-I Number of lectures: 60 Learning objective: To study the mathematical modeling of digital images **UNIT I** (15 LECTURES) Introduction, What Is Digital Image Processing? The Origins of Digital Image Processing Gamma-Ray Imaging X-Ray Imaging Imaging in the Ultraviolet Band Imaging in the Visible and Infrared Bands Imaging in the Microwave Band Imaging in the Radio Band Examples in which Other Imaging Modalities Are Used Fundamental Steps in Digital Image Processing Components of an Image Processing System Problems

Digital image fundamentals

Elements of Visual Perception Light and the Electromagnetic Spectrum Image Sensing and Acquisition Image Sampling and Quantization Some Basic Relationships between Pixels An Introduction to the Mathematical Tools Used in Digital Image Processing Problems

UNIT II

(15 LECTURES)

Image enhancements in spatial domain

Background

Some Basic Intensity Transformation Functions Histogram Processing

Smoothing Spatial Filters

Sharpening Spatial Filters

Combining Spatial Enhancement Methods

Problems

UNIT III

Image enhancements in frequency domain Background Preliminary Concepts Sampling and the Fourier Transform of Sampled Functions The Discrete Fourier Transform (DFT) of One Variable Extension to Functions of Two Variables Some Properties of the 2-D Discrete Fourier Transform The Basics of Filtering in the Frequency Domain Image Smoothing Using Frequency Domain Filters Image Sharpening Using Frequency Domain Filters Selective Filtering Implementation Problems

UNIT –IV

(15 LECTURES)

Image restoration

Image Restoration and Reconstruction A Model of the Image Degradation/Restoration Process Noise Models Spatial and Frequency Properties of Noise Some Important Noise Probability Density Functions Periodic Noise **Estimation of Noise Parameters** Restoration in the Presence of Noise Only-Spatial Filtering Mean Filters **Order-Statistic Filters** Adaptive Filters Periodic Noise Reduction by Frequency Domain Filtering Linear, Position-Invariant Degradations Estimating the Degradation Function **Inverse Filtering** Minimum Mean Square Error (Wiener) Filtering **Constrained Least Squares Filtering** Geometric Mean Filter Image Reconstruction from Projections Problems

(15 LECTURES)

Reference:

- 1. Digital image processing, third edition -Gonzalez and woods
- 2. . Digital image processing, third edition -A. K. Jain
- 3. . Digital image processing using MATLAB -Gonzalez and woods

Practicals T.Y.BSc Digital Image processing-I

COURSE: S.PHY.DIP.AC.5.PR

Digital processing of given images using software Tutorials on image processing

St. Xavier's College – Autonomous Mumbai

Syllabus For 6th Semester Courses in PHYSICS (June 2015 onwards)

Contents:

Theory Syllabus for Courses: S.PHY.6.01 –**Statistical Mechanics** S.PHY.6.02 –**Atomic and Molecular Physics** S.PHY.6.03 – **Nuclear Physics** S.PHY.6.04 – **Solid State Physics** S.PHY.DIP. AC.6: **Digital Image processing-II** Practical Course Syllabus for: S. PHY.6. PR Practical Course Syllabus for: S. PHY.6. PR

T.Y. B.Sc. PHYSICS

Title: Statistical Mechanics

Learning Objectives:

To study statistical behaviour of many particle systems. Number of lectures: 60

UNIT I

1. Probability: Set theory, introduction to probability, conditional probability, Random walk problem, discrete Random variables, combining probabilities of events, probability distribution moments, the moment generating function, the characteristic function, binomial distribution, the central limit theorem.

Introduction to Statistical Mechanics: description of a system, thermal and 2. adiabatic interaction, classical gas.

UNIT II

1. **Kinetic theory**: phase space formulation, the Boltzmann transport equation, the postulate of molecular chaos, the H theorem, the Maxwell-Boltzmann distribution (emphasize the connection with the proof of the central limit theorem), the most probable distribution, Liouville's theorem and its connection to the H theorem.

UNIT III

(15 Lectures)

(15 Lectures)

1. The methods of statistical mechanics: the postulate of equal a priori probability in phase space, the microcanonical ensemble, entropy, the equipartition theorem, classical ideal gas, Gibbs paradox. The canonical ensemble, the partition function, the Helmholtz free energy, energy fluctuations in the canonical ensemble.

UNIT IV

- 1. The grand canonical ensemble, density fluctuations in the grand canonical ensemble, first order phase transitions, the meaning of the Maxwell construction.
- 2. Quantum Statistics of ideal geases: Bose Einstein statistics, black-body radiation, The Rayleigh-Jeans formula, The Planck radiation formula, Fermi – Dirac statistics, comparison of results, Transition between states.

References:

- 1. Statistical and thermal physics S. Loknathan, R. S. Gambhir
- Statistical Mechanics Kerson Huang (Indian edition exists) 2.
- 3. Statistical Mechanics (Berkeley Physics Course, vol 5) E. Reif
- 4. Statistical and thermal physics F. Reif
- 5. Mathematical Methods of Physics J. Mathews and R. L. Walker

CIA: Problem solving/ MCQs

Course: S.PHY.6.01

(15 Lectures)

(15 Lectures)

T.Y.B.Sc. PHYSICS

Title: Atomic& Molecular Physics

Learning Objectives: To study atomic structure and atomic and molecular spectra. **No. of Lectures:60**

UNIT I: Structure of atom

- **1.** Review of Hydrogen atom problem, Role of rotation symmetry
- 2. Pauli's Exclusion Principle, Hund's Rule, Symmetric & Antisymmetric Wave Function
- 1. Vector Atom Model, Spin Orbit Coupling, LS Coupling, JJ Coupling.

Unit II: Atomic spectra

- 1. Review concepts of quantum mechanics, Origins of Spectral Lines & Selection Rules.
- 2. Visible spectra, Alkali Spectra, Physics of LASERs (3level system).
- 3. X-ray spectra: Characteristic, Continuous, Mosley's Law, K, L, M Series.
- **4.** Atoms in External magnetic field: Normal Zeeman Effect, Lande's Factor, Anomalous Zeeman Effect,
- 5. Paschen Back Effect:-Theory, selection rules, application to Principal Series Doublet.

UNIT III: Molecular Spectra (Diatomic Molecule)

- 1. Rotational Spectra, Microwave Spectrometer.
- 2. Vibrational Spectra, Vibrational Rotational Spectra, Infrared Spectrometer.
- **3.** Electronic Spectra, Born Oppenheimer Approximation, Intensity of Vibration Electronic Spectra, Frank Condon Principle.
- **4.** Raman Effect: Classical Theory, Quantum Theory, Pure Rotational Raman Spectra, Vibrational Raman, Raman Activity of CO₂ and H₂O, Experimental Techniques.

UNIT IV: Resonance Spectroscopy

- 1. Electron spin resonance, theory, experimental method, applications
- 2. Nuclear magnetic resonance, theory, experimental method, applications
- 3. Solid state surface spectroscopy.

References: -

- 1.Perspective of Modern Physics A.Bieser.
- 2. Atomic Spectra White.
- 3. Molecular spectra C. M. Banwell & McCash.

CIA: PROBLEM SOLVING/MULTIPLE CHOICE QUESTIONS/ ASSIGNMENT

COURSE:S.PHY.6.02

(15 lectures)

(15 lectures)

(15 lectures)

(15 lectures)

T.Y.B.Sc. PHYSICS Title:NUCLEAR PHYSICS No of Lectures:60

Learning Objectives:-To Understand the constituents of the nucleus, their properties, detection and reactions.

UNIT-I:

(15 LECTURES)

COURSE:S.PHY. 6.03

1.Properties of the nucleus: Rutherford scattering & measurement of nuclear size, Measurement of nuclearradius by Hofstadter experiment, Nuclear forces and their properties, Meson theory of nuclear forces, Yukawa Potential.

2. The Q equation:- Types of nuclear reactions, the balance of mass and energy in nuclear reaction , the Q equation and solution of Q equation

3. Radioactive decay: Decay chains. **Alpha decay :** Range of alpha particles, Disintegration energy, Alpha decay paradox: Barrier Penetration, Gamow's theory of alpha decay and Geiger-Nuttal law. Velocity and energy, Absorption of alpha particles: Range, Ionization and stopping power, energetics, energy levels & decay schemes. **Beta decay:** Introduction, Continuous beta ray spectrum-Difficulties encountered to understand it, Pauli's neutrino hypothesis, Velocity and energy of beta particles, energetics, energy levels and decay schemes. **Gamma decay:** internal conversion, nuclear isomerism.

UNIT-II

(15 LECTURES)

(15 LECTURES)

(15 LECTURES)

1.Binding Energy and Mass formula: (Review of Liquid drop model &Weizsacher's semiempirical mass formula), Mass parabolas - Prediction of stability against beta decay for members of an isobaric family, Stability limits against spontaneous fission. Qualitative predictions of shell model & Magic numbers.

2. Nuclear energy : Introduction, Asymmetric fission - Mass yield, Emission of delayed neutrons, energy release in fission, Nature of fission fragments, Energy released in the fission of U^{235} , Fission chain reaction, Fusion of lighter nuclei, Neutron cycle in a thermal nuclear reactor (Four Factor Formula), Comparison of fission and fusion processes.

UNIT-III

1. Applications of nuclear energy :- nuclear reactors:- pressurized water reactors, boiling water reactors, breeder reactors, fusion reactors.**Nuclear detectors**:- Ionization chamber, Proportional counter, G.M. Counter, Scintillation counter, Solid State detectors, Cloud and Bubble chamber, **Mossbauer effect, Detection of neutrino**, nuclear power generation, nuclear safety and hazards.

UNIT-IV

1.Accelerators:-Introduction, the LINAC, cyclotron, synchrocyclotron, betatron synchrotron, proton synchrotron, Electrostatic Accelerators.

Page 4

2. Elementary particles : Introduction, Classification of elementary particles based on conservation laws, particles and antiparticles. The Fundamental interactions, elementary particle quantum numbers, conservation laws and symmetry, quark model,.

References:

1. Concepts of modern physics	Arthur Beiser (6 th edition, TMH)
2. Nuclear Physics	S.B. Patel (Wiley Eastern Ltd.).
3. Nuclear Physics	Irving Kaplan (2 nd Ed.) (Addison Wesley).
4. Nuclear Physics	S. N. Ghoshal (S. Chand & Co.)
5.Nuclear Physics	D. C. Tayal (Himalayan Publishing House)
6. Modern Physics	Murugesan&KiruthigaSivaprasath (S. Chand & Co.)
7. Nuclear physics	Kakani & Kakani
Additional References.	
1. Atomic & Nuclear Physics	A B Gupta & DipakGhosh(Books & Allied (P) Ltd.)
2.Nuclei and particles	E.Segre. (W.A. Benjamin, Inc.)

CIA: PROBLEM SOLVING/MULTIPLE CHOICE QUESTIONS/ ASSIGNMENTS

T.Y.B.Sc. PHYSICS Title:Solid State Physics No of Lectures:60 Learning objective: To understand the fundamental properties of materials and devices

UNITI:

Crystal physics: Introduction, lattice, basis, crystal structure, unit cell & primitive cell, crystal classes & crystal systems in two & three dimensions, Bravais lattices, atomic packing factors in cubic system and hexagonal lattice. Crystal structures of diamond, ZnS, Nacl, CsCl, Miller indices, Inter-planar spacing. Experimental diffraction methods, derivation of scattered wave amplitude, Brillouin zones, - Kittle 5thed

UNIT - II

Theory of metals : Classical free electron theory of metals, Relaxation time, Collision time and mean free path, Drawbacks of classical theory, Quantum theory of free electrons, Fermi-Dirac statistics and electronic distribution in solids, Density of energy states and Fermi energy, The Fermi distribution function, Heat capacity of the electron gas, Mean energy of electron gas at 0 K, Electrical conductivity from quantum mechanical considerations, Hall effect. Ch.6 – Kittle 5thed

UNIT - III

1. Band theory of solids: The Kronig- Penney model Brillouin zones, Number of wave functions in a band, Motion of electrons in a one-dimensional periodic potential, Distinction between metals, insulators and intrinsic semiconductors.

COURSE:S.PHY.6.04

(15 lectures)

(15 lectures)

(15 lectures)

2. Band theory of Semiconductors: Electrons and Holes in an Intrinsic Semiconductor, Conductivity, Carrier concentrations, Donor and Acceptor impurities, Charge densities in a Semiconductor, Fermi level in extrinsic semiconductors, Diffusion, Carrier lifetime, The continuity equation.

Ch. 7, 8 – Kittle 5thed

UNIT - IV

(15 lectures)

- 1. Magnetic properties of Matter: Diamagnetism and Paramagnetism, The origin of permanent magnetic dipoles, Diamagnetism and Larmor precession, The static paramagnetic susceptibility. Quantum mechanical theory of paramagnetism, Ferromagnetism- the Weiss molecular field, Comparison of the Weiss theory with experiment, the Weiss field, the anisotropy energy, the Bloch wall, coercive force and hysteresis. Ch. 18, 19 Dekker
- 2. Superconductivity : concept, achievement at low temp, attempts at room temp. Examples. References :
 - (i) Introduction to solid state physics Charles Kittel
 - (ii) Solid State Physics A. J. Dekker
 - (iii) Solid State Physics (Problems and solutions) S. O. Pillai
 - (iv) Solid State Physics S. O. Pillai
 - (v) Solid State Physics S.P.Kakani and AmitKakani

CIA: PROBLEM SOLVING/MULTIPLE CHOICE QUESTIONS

T.Y.B.Sc. PHYSICS

Course: S.PHY.6.PR

Minimum four expts to be performed from first three groups

<u>Group – I</u>

- 1) Double Refraction.
- 2) Log Decrement.
- 3) Velocity of Ultrasonic waves in a liquid.
- 4) Rydberg's Constant H₂ Spectrum.
- 5) Wavelength of spectral lines of Hg using Grating.

<u>Group – II</u>

- 1) Energy band gap of semiconductor using diode / thermistor.
- 2) Semiconductor diode as a temp. sensor.
- 3) Determination of Planck's constant with the help of a photoelectric cell.
- 4) Absolute Capacitance using B.G
- 5) Conversion of micrometer to a multirange milliammeter and voltmeter (Ohmmeter only Calculations.)

<u>Group – III</u>

- 1) JFET Amplifier.
- 2) Wien's Bridge Oscillator using OpAmp.

- 3) Log Amplifier using OpAmp.
- 4) Active Integrator & Differentiator (learning skill of soldering).
- 5) Monostable multivibrator & Ramp generator using 555 timer.
- 6) First Order Active filter (Low Pass / High Pass) with phase shift measurement (with skill of use of Breadboard).

<u>Group – IV</u>

One Project equivalent to 10 practical turns under the guidance of a teacher.

References:

- 1. Advanced course in practical physics D. Chattopadhyay, P.C. Rakshit& B. Saha
- 2. B. Sc. Practical physics Harnam Singh
- 3. A text book of practical physics Samir Kumar Ghosh
- 4. B. Sc. Practical physics C. L. Arora
- 5. Practical physics C. L. Squires
- 6. University Practical physics D. C. Tayal
- 7. Advanced Practical physics Worsnop& Flint

CIA: MCQs on Conceptual understanding/ experimental skills for first three groups Planning, designing and preparation of synopsis of the project

COURSE:S.PHY.DIP.AC.6

DIGITAL IMAGE PROCESSING -II

[60 LECTURES]

Learning objective: To study the mathematical modelling of digital images

UNIT I

(15 LECTURES)

Color image processing

Color Fundamentals

Color Models

Pseudocolor Image Processing

Basics of Full-Color Image Processing

Color Transformations

Smoothing and Sharpening

Image Segmentation Based on Color

Noise in Color Images

Color Image Compression

Problems

Wavelets and multi-resolution processing Background Multi-resolution Expansions Wavelet Transforms in One Dimension The Fast Wavelet Transform Wavelet Transforms in Two Dimensions Wavelet Packets Problems

UNIT II

(15 LECTURES)

Image compression Fundamentals Some Basic Compression Methods Digital Image Watermarking

UNIT III

(15 LECTURES)

(15 LECTURES)

Morphological image processing Preliminaries Erosion and Dilation The Hit-or-Miss Transformation Basic Morphological Algorithms Gray-Scale Morphology

UNIT –IV

Image segmentation Fundamentals Point, Line, and Edge Detection Thresholding Region-Based Segmentation Segmentation Using Morphological Watersheds The Use of Motion in Segmentation

Reference :

- 1. Digital image processing, third edition -Gonzalez and woods
- 2. . Digital image processing, third edition-A. K. Jain
- 3. . Digital image processing using MATLAB -Gonzalez and woods

Practicals T.Y.BSc Digital Image processing-II

COURSE: S.PHY.DIP.AC.6.PR

Digital processing of given images using software Tutorials on image processing